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Foreword

vi

Before you read this book, you need to know some 
 defi nitions. A ‘statistic’ is just a bit of numerical data. 
However, ‘statistics’ is not just a few of these data points put 
together. It is in fact, “the science and art of dealing with 
variation in data through collection, classifi cation and analy-
sis in such a way as to obtain reliable results.”1 What makes 
statistics unique is their ability to quantify uncertainty – 
to make uncertainty precise!2 Evidence-based health care 
denotes the integration of the best available evidence from 
clinical research with clinical expertise in the context of the 
patient’s circumstances and preferences.

In order to practice evidence-based health care, a 
practitioner must be able to interpret reports of clini-
cal research – and these reports are, of course, fi lled with 
statistics. In fact, these reports are fi lled with more and more 
statistics. In 1952, a reader of the journal Pediatrics who 
understood descriptive statistics such as means and stan-
dard deviations and just three inferential statistics (Student’s 
t-test, chi-square and Pearson’s r) could understand 97% of 
research articles; by 1982, this level of understanding only 
applied to 49% of the research articles in Pediatrics. By 2005, 
in order to interpret just 47% of the research in Pediatrics, a 
reader would need to be familiar with 10 of the most com-
mon types of statistical procedures.3 But do not despair; this 
book will take the reader through all 10 of these procedures, 
and more.

The best way to learn to understand statistical concepts is to 
use them. This book is organised around active participation 

in the learning process. The authors have treated you (the 
reader) as a participant, not as an observer. The learning 
objectives for each chapter start with the words, “On comple-
tion of this unit, participants will be able to . . . .” In each unit, 
the objectives are clearly stated, the material discussed, and 
examples provided. The examples are not made up – they 
are real articles from the health science literature, replete 
with the complexities that real life presents. The authors also 
suggest further reading and test your understanding with 
questions that could also be used in group discussions.

Understanding statistics does not guarantee that you will 
practice evidence-based health care. However, it does make 
it considerably more likely that you will recognise the way 
in which statistics are used and can also at times, mislead. 
The book How to Lie with Statistics was fi rst published over 
50 years ago – and it is still very timely!4 Authors of scientifi c 
papers are human, after all, and they want to convince both 
their readers and themselves that their results are important. 
As readers of the literature, it is our job to critically assess 
study design, execution and analysis in order to determine 
whether the results of any given study can be applied to our 
patients. Therefore, this book also addresses statistics, the 
analysis, in the context of study design in a concise, easy to 
understand and learner-friendly format.

Let me suggest that you work through this book before 
you read another article!

Virginia A. Moyer MD, MPH

1  Last JM. A dictionary of epidemiology. New York: Oxford University 

Press, 1983.
2  Gonick L, Smith W. The cartoon guide to statistics. New York: Harper 

Collins, 1993.

3  Hellems MA, Gurka MJ, Hayden GF. Statistical literacy for readers of 

pediatrics: a moving target. Pediatrics 2007;119:1083–1088.
4  Huff D. How to Lie With Statistics. New York: W.W. Norton and 

Company, 1993.
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Introduction

“If there were no individual variability, medicine would have 
been a science not an art.” Sir William Osler, 1849–1919. 
Master physician, writer and inspiring teacher1

This book is designed to foster a better understanding of the 
medical statistics that are frequently used in the reporting 
of health care research and that underpin evidence-based 
practice. Learning how to use medical statistics is not a 
spectator sport and therefore this book is fi lled with practical 
hands-on exercises. Although this book is intended for group 
learning, it could be used equally well as a reference or text 
book in its own right.

We particularly focus on the interpretation of published 
results because critical appraisal has become an essential 
component of evidence-based health care.2 Critical appraisal 
is now taught widely to clinicians to improve the evalua-
tion and understanding of research and its translation into 
individual patient care and health care delivery. To inform 
these practices, it is crucial to distinguish the results that are 
believable from the results that are biased because incor-
rect statistical methods have been used. An understanding 
of medical statistics is an important part of  understanding 
health care research and this informs provision of better 
patient care.3 When critically appraising the literature to 
decide whether the evidence presented in a journal article 
is robust enough to warrant a change in clinical practice, or 
whether a new research study should be designed to collect 
better evidence, evaluation of the statistics methods that are 
used is essential.

In analysing research data, the choice of the most 
appropriate statistic depends on many factors – the study 
design, the sample size, the type of outcome measurements, 
the distribution of the measurements in the sample, the 
purpose of the study and much more. In this book, we draw 
on the related concepts of research design and medical sta-
tistics to help clinicians to incorporate statistical appraisal 

into evidence-based practice and to help researchers to 
interpret research results correctly. However, this book is not 
grounded in the fi eld of clinical epidemiology and we do not 
explain either the strengths or weaknesses of different study 
designs or the various methods of participant selection, 
which are covered in detail in other texts.4–6

As clinicians or researchers, we should never lose track 
of the concept that science is a search for the truth. In this 
search, there is no place for bias as a result of inappropri-
ate statistical methods or misinterpretation of summary 
results. The correct use of medical statistics is not only ethi-
cal because it leads to the correct interpretation of the data, 
but is imperative because so much information about how 
to do research well is now available. We hope that this book 
will help to bring researchers and clinicians one step closer 
towards being statistically savvy and critically astute in their 
reading of the research literature and their interpretation of 
research results.
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Overview

This book has been designed as either a group or individual 
learning workbook to promote the concepts of applying 
medical statistics in either a health care or research context. 
Each unit in this book contains:

Specifi c learning objectives to clearly identify the  •

learning goals.
Basic information and formulas for key statistical  •

concepts as they relate to evidence-based health care.
Take home lists of key terms and concepts for easy  •

identifi cation of the fundamental concepts.
Reprinted journal articles aimed at exposing the reader  •

to a real example of the concepts as presented in the 
health care literature.

Worked examples. •

Questions for readers to assess their understanding of  •

concepts and calculations.
A quick quiz to aid understanding and reinforce  •

concepts.
Critical appraisal checklists which are designed to assist  •

the reader in evaluating reported research.

The back matter of the book also contains two valuable 
reader resources:

A glossary for ready access to the defi nitions used. •

Answers to the set articles and the quiz in  •

each unit.

viii
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UNIT 1

Hypothesis testing and estimation

1

Aims

To understand how the methods of hypothesis testing and 
estimation complement one another when deciding whether 
there are important differences in summary statistics between 
two or more study groups.

usually reported. In hypothesis testing, a ‘null hypothesis’ 
is fi rst specifi ed, that is a hypothesis stating that there is no 
difference in the summary statistics of the study groups. In 
essence, the null hypothesis assumes that the groups that are 
being compared are drawn from the same population. An 
alternative hypothesis, which states that there is a difference 
between groups, can also be specifi ed. The P value, that is, 
the probability that the difference between the groups would 
have occurred assuming the null hypothesis was ‘true’, is then 
calculated. A P value is obtained by fi rst calculating a test sta-
tistic, such as a t-statistic or a chi-square value, which is then 
compared to a known distribution. The known distribution 
is used to determine the probability that the observed test 
statistic value (or a more extreme value) would occur, if the 
null hypothesis were true. In the following units in this book, 
the calculation and interpretation of the most commonly 
used test statistics will be explored.

A P value of less than 0.05, that is a probability of less 
than 1 chance in 20, is usually accepted as being statisti-
cally signifi cant. If a P value is less than 0.05, we accept that 
it is unlikely that a difference between groups has occurred 
by chance if the null hypothesis was true. In this situation, 
we reject the null hypothesis and accept the alternative 
hypothesis, and therefore conclude that there is a statistically 
signifi cant difference between the groups. On the other hand, 
if the P value is greater than or equal to 0.05 and therefore 
the probability with which the test statistic occurs is greater 
than 1 chance in 20, we accept that the difference between 
groups has occurred by chance. In this case, we accept 
the null hypothesis and conclude that there is no difference 
between the study groups beyond variations that can be 
attributed to sampling.

In accepting or rejecting a null hypothesis, it is  important 
to remember that the P value only provides a  probability 
value and does not provide absolute proof that the null 
hypothesis is true or false. A P value obtained from a test 
of signifi cance should only be interpreted as a measure of 
the strength of evidence against the null hypothesis.2 The 
smaller the P value, the stronger the evidence provided by 
the data that the null hypothesis can be rejected. Thus, P 
values of 0.01 or lower are conventionally regarded as being 

Learning objectives
On completion of this unit, participants will be able to:

understand and interpret    • P values;
describe the meaning of type I and II errors;   •

decide when to use a one-tailed or two-tailed test of    •

signifi cance;
estimate and interpret 95% confi dence intervals.   •

Background

In health care research, signifi cance tests are usually  conducted 
to assess whether there is evidence for a real difference in 
the summary statistics of two or more study groups. The 
summary statistic may be, for example, the mean of the out-
come measurement or a frequency rate. When comparing two 
or more groups, the probability that the difference between 
the groups has occurred by chance, which is expressed as a P 
value, is used to describe the statistical signifi cance of the fi nd-
ings. However, P values convey only part of the information 
and therefore they should be accompanied by an  estimation 
of the effect size, that is the size of the difference between the 
study groups that was found.1 The estimation, which may be 
a statistic such as the size of the mean difference between two 
groups, allows readers to assess whether the observed dif-
ference is important enough to warrant a change in current 
health care practice or to warrant further research. Reporting 
the effect size enables readers to judge whether a statistically 
signifi cant result is also a clinically important fi nding.

Hypothesis testing and P values
Most medical statistics are based on the concept of 
hypothesis testing and therefore an associated P value is 
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2   UNIT 1  Hypothesis testing and estimation

highly signifi cant because they indicate that it is highly 
unlikely that the difference between groups has occurred 
by chance. Although the cut-off point between statistical 
signifi cance and non-signifi cance is generally accepted as a 
P value of less than 0.05, it is important to remember that 
P values of 0.07 and 0.04 indicate very similar strengths 
of evidence even though a P value of 0.07 is convention-
ally regarded as being non-signifi cant and a P value of 0.04 
as being statistically signifi cant. To convey the strength 
of evidence rather than using pre-conceived arbitrary 
categories, actual P values should be reported, for example 
P = 0.04 rather than P < 0.05 and P = 0.63 rather than NS 
(not signifi cant).

In measuring between-group effects, the absolute 
magnitude of the difference between the groups and the 
direction of the effect are not conveyed by the P value. 
Thus, when P values alone are reported, the results can only 
be interpreted as probability values that indicate statistical 
signifi cance with no regard for the clinical importance of 
the result. A P value that is larger than 0.05 does not neces-
sarily mean that the treatments or the groups that are being 
compared are similar, because the P value depends on both 
the size of difference between the groups and on the sample 
size.3 By only using P values, it is not possible to answer ques-
tions of how confi dent we are, given the study results, that a 
treatment is benefi cial or has no effect, or how much better we 
expect patients to become if they receive a new treatment.4, 5 
For this, we need an estimation of the size of the effect in 
addition to signifi cance tests.

Estimation
In health care research, rather than enrolling an entire 
population in a study, which would usually be  impractical, 
a sample of the population is usually selected and then 
statistics are used to make inferences about the entire 
population. When using estimation, a summary statistic is 
calculated that describes the effect size in the sample, together 
with a margin of precision around the statistic that depends 
on the size of the sample that was enrolled. Estimation allows 
us to make judgements on the certainty, or uncertainty, of 
summary statistics calculated from a sample, and therefore 
to make inferences about the population from which the 
sample was drawn.

When comparing two study groups, estimation involves 
calculating the actual size of the difference between the 
groups in addition to a P value. A limitation in the inter-
pretation of P values is that they are heavily infl uenced 
by the sample size. Although P values provide a measure 
of the strength of evidence, they convey only a small part of 
the total information about the effectiveness of a treatment 
in  clinical research or about differences between population 
samples in epidemiological studies. In a clinical study, the 
outcome of interest may be, for example, a difference in mean 
lung function measurements or a per cent reduction in 

symptoms between groups receiving a new treatment 
compared to a standard treatment (control). These types 
of summary statistics indicate how much patients could 
expect their lung function to increase or their symptoms to 
improve if they received the new treatment compared to if 
they received the standard treatment. As such, the summary 
statistics quantify the actual effect of the new treatment in 
a way that complements the probability that the difference 
between groups arose by chance.

TAKE HOME LIST

A • P value indicates the strength of evidence against the 
null hypothesis.

A • P value of less than 0.05 indicates that there is a 
statistically signifi cant difference between the study 
groups.

Smaller • P values provide stronger evidence that the null 
hypothesis is false.

The actual • P value, for example, P = 0.04 or P = 0.56, 
should be reported.

A limitation of • P values is that they only describe a 
probability and the statistical signifi cance of a between-
group difference.

P•  values are strongly infl uenced by the sample size. The 
larger the sample size the more likely a difference between 
study groups will be statistically signifi cant.

Estimation provides an effect size between groups that • 
complements the P value.

Confi dence intervals
Confi dence intervals are important in estimation in that 
they describe the precision around a summary statistic, such 
as a difference between study groups.5 There is error in all 
estimates of effect because it is unlikely that the measured 
effect would be the same when a study is repeated in different 
random samples of the population. When different groups 
of people are sampled, variations in summary statistics occur 
simply because there is a large amount of inherent variation 
in human characteristics.

The confi dence interval provides an estimated range of 
values that is likely to include the population value. The 
interpretation of a 95% confi dence interval is that 95% of 
the confi dence intervals calculated from many different 
samples would include the true value of the summary statistic 
that occurs in the population.6 A simpler and perhaps more 
intuitive way to interpret a 95% confi dence interval is that 
we can be roughly 95% certain, or confi dent, that the true 
value of the summary statistic in the population is within 
the 95% confi dence interval calculated from a single study 
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UNIT 1  Hypothesis testing and estimation   3

sample. Thus, confi dence intervals provide an estimate of 
precision, or rather lack of precision, which can be attrib-
uted to sampling variation. In Unit 2, we explain how 95% 
confi dence intervals for differences between study groups 
are calculated and show how these intervals can be used to 
make statistical inferences about differences between groups, 
sometimes without the need for computing a P value at all.

Confi dence intervals are calculated from the standard 
error (SE), which is an estimate of the precision with which a 
summary statistic has been measured. The standard error can 
be used to calculate a 95% confi dence interval as follows:

95% confi dence interval  summary statistic  (1.96  SE)

In this calculation, the summary statistic may be a value such 
as a mean value, a percentage or an odds ratio and the SE 
is the standard error around the summary value. A critical 
value of 1.96, which is derived from the normal population 
distribution of the summary statistic, is used to compute 
95% intervals when the group or sample size is larger than 
50 participants. If the sample size is smaller than 50, a larger 
critical value than 1.96 that can be derived from a statistical 
table should be used.6

It is important to remember that a 95% confi dence 
interval only applies to populations with the same 
characteristics as the population from which the data were 
sampled.6 However, a 95% confi dence interval provides 
important information over and above the P value. This is 
especially important when the P value is greater than 0.05 
because a judgement about the clinical importance of the 
difference that has been measured can be made by  assessing 
the width of the 95% confi dence interval. As might be 
expected, the P values and confi dence intervals from any 
study are closely related to one another. In most cases, if the 
value of the null hypothesis, for example a value equal to 
0, falls within the 95% confi dence interval then the P value 
will be greater than 0.05.6

When critically appraising the literature, it is important to 
calculate 95% confi dence intervals if they are not reported. 
Although 95% confi dence intervals for mean values are 
calculated from the standard error, which describes the 
precision around the mean value, the only descriptor of 
variance that is often reported is the standard deviation 
(SD), which describes the distribution of the spread or the 
variation of the actual data points. In describing the error 
and spread around a mean value, the terms standard error 
and standard deviation have important distinctions7 and 
for this reason they are explained in more detail in Unit 6. 
To calculate 95% confi dence intervals, the standard 
deviation around a mean value can easily be converted into a 
standard error as follows:

Standard error (SE)  SD/n

where n is the sample size of the group from which the mean 
and the standard deviation were estimated.

As can be seen from the formula, the standard error 
is inversely related to the square root of the sample size. 
Thus, the standard error becomes smaller as the sample 
size increases. As the sample size becomes larger, the width 
of the 95% confi dence interval for the same effect becomes 
smaller, indicating greater certainty in the precision of the 
result. On the other hand, as the sample size becomes smaller, 
the standard error becomes larger and thus the width of 
the 95% confi dence interval becomes wider, indicating less 
certainty in the precision of the result. The above methods 
for estimating and calculating 95% confi dence intervals 
apply to all summary statistics. The calculation of standard 
errors and the 95% confi dence interval for proportions, for 
example incidence and prevalenvce rates, and for odds ratios 
are discussed in the following units.

Glossary

Term Defi nition

Null hypothesis A hypothesis stating that there is no 
difference between the study groups.

P value Probability that a difference between 
study groups would have occurred if the 
null hypothesis was true.

95% confi dence 
interval

Range in which we can be approximately 
95% certain that the true population 
value lies.

Type I and II errors
Confi dence intervals clearly show the lack of precision around 
an estimate but, when only a P value is calculated, the degree 
of uncertainty about whether the null hypothesis should 
be accepted or rejected is easily overlooked. Obviously if a 
P value is very small, say less than 0.01, then the probability 
that the groups have been sampled from the same popula-
tion is quite unlikely and we can be confi dent that there is a 
real difference. Similarly if the P value is large, say over 0.1, 
then we can be confi dent that there is no difference between 
the groups beyond sampling variation. 

When testing between-group differences, the P value is 
closely related to the sample size. Thus, the larger the sample 
size, the smaller the P value will be for the same summary 
statistic, such as a mean difference between groups. The 
P value is smaller when the sample size is large because 
the summary statistic represents a more accurate estimate of 
the true value in the population from which the sample is 
drawn. Thus, the P value depends on both the size of the sum-
mary statistic and on the sample size. Therefore it is important 
to consider how the clinical importance of a difference (that 
is, the actual magnitude of the difference between groups) 
compares with the statistical signifi cance (that is, the P value 
which is dependent on sample size). The decision about the 
size of difference between groups that is considered clinically 
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4   UNIT 1  Hypothesis testing and estimation

resources will also be wasted. If the sample size is too large, 
the study may be unethical because more participants are 
enrolled than are needed to test the study hypothesis and 
research resources will also be wasted. For these reasons, 
ethics committees often request that a statistician is consulted 
when a study is being designed to ensure that the probability 
of type I and II errors is minimised.

One-tailed and two-tailed tests of signifi cance
The calculation of a P value is infl uenced by the expected 
direction of difference between study groups, which is 
generally specifi ed as the alternative hypothesis. When the 
difference between two study groups is expected to occur 
in one direction only, for example when a group of people 
receiving one treatment could only show greater improve-
ments than a group receiving another treatment, a one-tailed 
(or one-sided) test of signifi cance is used. For one-tailed 
t-tests, the probability of the test statistic value or one more 
extreme occurring in only one direction, such as occurring 
in only the upper tail of the distribution, is calculated.

When the difference between two study groups is expected 
to occur in either direction, for example when a group of 
people receiving one treatment could show a larger or smaller 
improvement than a group receiving another treatment, 
a two-tailed (or two-sided) test of signifi cance is used. For 
two-tailed tests, the probability of the test statistic occurring 
in either the upper or lower tail of the distribution is calcu-
lated. Since one-tailed tests involve calculating the probabil-
ity using only one tail of the distribution of the test statistic, 
the P value is reduced by half so that it is more signifi cant 
than when both tails are used in a two-sided test.

important depends solely on expert knowledge and can only 
be made by health care practitioners and researchers with 
experience in the fi eld.

When accepting or rejecting a null hypothesis it is possible 
that a type I or type II error has occurred.  A ‘type I error’ 
occurs when the null hypothesis is incorrectly rejected.  That is, 
it is concluded that there is a statistically signifi cant differ-
ence between groups when no clinically important difference 
exists.  The probability of a type I error occurring is reported 
as the P value.  With a P value of 0.05, there is a chance of 5 in 
100 or 1 in 20 that the signifi cant results occurred by chance 
alone.  So for every 20 statistical tests that are conducted, one 
test will be signifi cant by chance alone.  Type I errors fre-
quently occur when data is repeatedly analysed, when there 
are multiple comparisons or multiple outcomes.

A ‘type II error’ occurs when the null hypothesis is 
incorrectly accepted. That is, it is concluded that there is no 
statistically signifi cant difference between groups when a 
clinically important difference exists. The probability of 
avoiding a type II error is referred to as the power of the 
study, that is, the probability of correctly rejecting the null 
hypothesis.  Type II errors typically occur when the sample 
size is too small for a clinically important difference to reach 
statistical signifi cance. Because both type I and II errors 
are a product of the sample size, the risk of a type I error is 
reduced when the sample size becomes smaller but the risk 
of a type II error increases.

Although the occurrence of type I and II errors is usu-
ally related to the sample size, the consequences of these two 
types of errors are very different. For example, if a type I 
error occurs in a clinical trial then a new treatment will be 
incorrectly judged to be more effective than the control 

over the control treatment even though many people who 
receive the new treatment will experience benefi cial effects.
Type I and II errors not only have clinical implications for 
interpretation of summary statistics but also have ethical 
implications. If the sample size is too small, the study may be 
unethical because too few participants are enrolled than are 
needed to test the study hypothesis, and therefore research 

Glossary

Term Defi nition

Type I error When the null hypothesis is incorrectly 
rejected. That is, a difference between 
groups is statistically signifi cant 
although a clinically important difference 
does not exist. 

Type II error When the null hypothesis is incorrectly 
accepted. That is, a difference between 
groups is not statistically signifi cant 
although a clinically important difference 
exists. 

group treatment. If the new treatment is more expensive or 
has more severe side effects, recommendation of the new 
treatment will not confer benefi t on average but will have 
an adverse impact on people to whom it is  recommended. 
On the other hand, if a type II error occurs, the new 
treatment will be incorrectly judged to have no advantage 

TAKE HOME LIST

As the sample size increases, the width of the 95% • 
confi dence interval becomes smaller, indicating greater 
certainty in the precision of the result.

Summary statistics and their 95% confi dence intervals • 
should be reported, together with P values, to indicate the 
absolute size of the difference between the groups and 
the direction of effect.

Type I and II error rates are inversely related because both • 
are infl uenced by sample size – when the risk of a type I 
error is reduced, the risk of a type II error is increased.
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In most health care research studies, the use of one-tailed 
tests is rarely justifi ed because we should expect that a 
result could be in either direction. It is most unusual for 
researchers to be certain about the direction of effect 
before the study is conducted and, if they were, the study 
would probably not need to be conducted at all.7 For this 
reason, one-tailed statistics are rarely used. A search of the 
abstracts published in the British Medical Journal between 
1994 and 2006 found only one study in thirteen years 
in which the results were described using a one-tailed 
signifi cance test. If a one-tailed P value is reported, the P 
value can easily be converted into a two-tailed (or two-sided) 
value by doubling its numerical value.

In the vast majority of studies, two-tailed tests of signif-
icance are used unless there is a very good reason for not 
doing so.9 In health care research, it is almost always impor-
tant to allow for the possibility that extreme results could 
occur by chance and could occur equally often in either 
direction, which in clinical trials would mean towards a ben-
efi cial or towards an adverse effect. Two-tailed tests provide 
a more conservative result than one-tailed tests in that the P 
value is higher, that is, less signifi cant. In this way, two-tailed 
tests reduce the chance that a between-group difference is 
declared statistically signifi cant in error, and thus that a new 
treatment is incorrectly accepted as being more effective than 
an existing treatment. A conservative approach is essential 
because no health care practice should be modifi ed on the 
basis of results that have arisen entirely by chance.

Reading and questions
Reprint
Berry G. Statistical signifi cance and confi dence intervals. 
Med J Aust 1986;144:618–619. (See p. 7.)

After reading Unit 1 and the reprint by Berry (1986) answer 
the following questions:

Can 95% confi dence intervals be used to infer 1 P values 
and vice versa?
When might a signifi cance test fail to detect a real effect?2 

When is the null hypothesis value outside the 95% 3 
confi dence interval?
What type of error occurs when a difference between 4 
groups is not statistically signifi cant but is large enough to 
be thought clinically important?
Who decides what size of difference between groups is 5 
clinically important?

Worked example
Set article
Logroscino G, Kang, JH, Grodstein F. Prospective study of 
type 2 diabetes and cognitive decline in women aged 
70–81 years. BMJ (Published 23 February 2004). (See p. 10.)

In the set article by Logroscino et al. (2004) the authors 
refer to Table 2 and state that “On every cognitive test, 
means baseline scores were lower for women with 
diabetes”. Review this table and decide how this conclusion 
was reached.

What statistical test was used? •

What do the authors mean by “lower”? •

Have the authors used hypothesis testing or estimation to  •

reach this conclusion?
What is the size of the difference between groups and is it  •

clinically important?
Was there a type I or type II error? •

Would you reach the same conclusion? •

Exercise

The standard deviation around each estimate in Table 2 from 
Logroscino et al. (2004) is easily converted fi rst into an SE 
and then to a 95% confi dence interval. In Table 1.1, calcu-
late the SE and 95% confi dence intervals for the participants 
with diabetes.
After completing the new estimations in Table 1.1 decide:

What factors infl uence the 95% confi dence intervals and  •

in what way?
Why are the confi dence intervals so narrow? •

Table 1.1 Mean and 95% CI cognitive scores at baseline in 1394 women with type 2 
diabetes

N Mean SD SE Lower 95% CI Upper 95% CI

TICS (8–41 points) 1394 33.2 2.9 0.08 33.1 33.4

TICS 10 word list 1394 2.0 1.9

East Boston memory 
test – immediate recall

1394 9.3 1.8

East Boston memory 
test – delayed recall

1394 8.9 2.1
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Next calculate the SE and 95% confi dence intervals if the 
sample comprised only 50 participants, rather than the 
enrolled number of 1394.
After completing the new estimations in Table 1.2 decide:

What happens to the 95% confi dence intervals when the  •

sample size is smaller?
Why does this happen? •

Quick quiz

Tick the correct answer for each of the following questions.

A 95% confi dence interval is:1 
the range in which a mean value falls approximately (a) 

95% of the time;
the range in which 95% of the study observations can (b) 

be expected to lie;
the range in which we are 95% certain that the true (c) 

population value lies;
the range calculated as the mean (d)  1.96 standard 

deviations and which excludes 5% of the sample.

A type II error occurs when:2 
a statistician makes an error in calculating a (a) 

P value;
an important difference between groups has a (b) P value 

that is larger than 0.05;
a clinically important effect is unlikely to have (c) 

occurred by chance;
a new treatment proves more effective than was (d) 

thought when the sample size was calculated.

Two-tailed tests of signifi cance are used because:3 
that is what statisticians recommend as standard (a) 

practice;
statisticians are often unsure of what the study results (b) 

will show;

all studies have some degree of sampling variation (c) 
that affects the results;

a new treatment could turn out to be better or worse (d) 
than the control treatment.

An estimation of the difference between study groups 4 
provides important information that is additional to a P 
value because:

it conveys the size of the difference of effect between (a) 
the groups;

it provides a more reliable summary statistic;(b) 
it conveys how well the new treatment works;(c) 
it is an essential component of evidence-based  (d) 

practice.
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Many papers in the Journal use statistical methods and one 
of the aims of the review process is to try to ensure that 
appropriate methods have been used. Often papers report 
results of comparative studies that are designed to answer 
questions such as whether one treatment is superior to 
another for a particular disease, or whether there is an 
association between some form of behaviour (for example, 
taking regular exercise or smoking) and the occurrence of 
some disease. Comparative studies are almost invariably 
carried out on a sample of individuals who are chosen from 
the population of individuals to whom it is intended to 
generalize the results. Data are collected on the sample in 
order to make inferences on the population. Valid inferences 
can only be drawn if the sample is chosen in such a way that 
it is representative of the population. Otherwise a bias could 
occur; epidemiological methods are designed to eliminate 
such biases.

Since the aim of a statistical analysis is to make  inferences, 
it is paramount to express whatever inferences that can 
be drawn in the most informative way. There are several 
methods of statistical inference, but the two that are most 
commonly used are signifi cance testing and confi dence 
interval estimation. The former is well known and is  featured 
by quoting P values. Many authors appear to be under 
the impression that a profusion of P values is necessary; 
 regrettably this impression has been bolstered in the past by 
editors of biological journals. Signifi cance testing has its place 
but, as mentioned by Healy in 1978,1 “it is widely agreed 
among statisticians (if less so among the more naive users of 
statistics) that signifi cance testing is not the be-all and end-all 
of the subject”. In this leading article I would like to discuss 
the characteristics of both methods of inference, show that a 
confi dence interval contains the result of a signifi cance test, 
but not vice versa, and suggest that confi dence intervals are 
the answers to the more interesting questions that data can 
be used to answer.

Any particular study is based on a particular sample; 
however, it is useful to imagine that the study is repeated 
with a different sample being selected each time. These 
hypothetical studies will give different results because 
they contain different individuals, and individuals vary 
in any characteristic because of biological variability. The 
differences are termed sampling variability. It follows then 
that the results that are obtained from a particular sample 

can only be taken as an approximation to the actual situation 
in the whole population. Statistical methods are concerned 
with assessing the degree of approximation and what may be 
reasonably inferred, given that a different sample would have 
produced a different result.

The methods are based on the assumption that it is a 
matter of chance which particular subjects are in the sample 
that is being studied, and the sampling variability is thus 
random variation which is determined by the laws of 
probability. Therefore, the inferences are expressed in terms 
of probability. The situation is illustrated below.

Taking a sample from the population involves sampling 
variation. As a consequence of this, inferences from the 
sample data back to the population involve uncertainty.

A statistical analysis may be thought of as asking questions 
of the data. In an investigation that compares two groups for 
the mean value of, for example, blood pressure or the preva-
lence of some disease, three questions may be posed: Is there 
a difference between the groups?; How large is the difference?; 
and How accurately is the size of the difference known?

As expressed, the fi rst question expects the answer “yes” 
or “no”; although the answer cannot be given in precisely 
these terms, it is often reduced to two possibilities. The 
appropriate methodology is the signifi cance test. The second 
question expects a numerical value to be the answer. This is 
an estimate and, as it is a single value, is referred to as a point 
estimate. In effect, the third question asks how reliable this 
point estimate is; the answer is a range of values which is 
referred to as an interval estimate or a confi dence interval.

These questions represent two approaches to inference: 
hypothesis testing and estimation. Although at fi rst sight they 
appear to be quite different, in concept they have much in 
common. Both make inferential statements about the value 
of a parameter. (A parameter is an unknown quantity which 
partly or wholly characterizes a population, for example, a 
mean or a measure of association.)

Sampling variation

Uncertainty

Population

Sample data

Inferences on population

Associate Professor of Biostatistics, School of 
Public Health and Tropical Medicine 
The University of Sydney
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The signifi cance test is an appropriate technique when 
there is an a priori hypothesis to test. For the purpose of the 
statistical test this hypothesis is expressed in null form — 
such as when no difference exists between groups — and the 
test evaluates whether the data are consistent with the null 
hypothesis. If the data differ markedly from those which would 
be expected under the null hypothesis, to the extent that the 
probability of such an extreme result is low, then it is said that 
the result is statistically signifi cant. Probability is measured 
on a continuum between 0 and 1, but in signifi cance testing 
a probability is considered low if it is less than conventional 
values such as 0.05 (5%) or 0.01 (1%). A signifi cant result 
is equated with the rejection of the null hypothesis or the 
claim of a real effect. By defi nition, when the null  hypothesis 
is true, signifi cant results will occur by chance with the same 
relative frequency as the signifi cance probability. That is, 
real effects will be claimed when the null hypothesis is true; 
however, the probability of this error (type 1) is determined 
in the data analysis.

One disadvantage of a signifi cance test is that it may fail to 
detect a real effect; that is, although the null hypothesis is false, 
the evidence is not strong enough to reject it. The probability 
of this error (type II) can be controlled at the design stage 
only, by appropriate selection of the sample size, and may be 
quite large. Thus, the trap of equating non-signifi cance with 
no effect must be avoided; failure to reject the null hypothesis 
is not the same as accepting it.

In the approach of confi dence interval estimation no 
particular hypothesis is considered; rather, the emphasis 
is on estimating those values of the parameter with which 
the data are consistent. These values form a range — the 
confi dence interval. The range is calculated so that there is 
a high probability — conventionally 95% or 99% — that it 
contains the true value of the parameter.

A signifi cance test is essentially a test of whether the 
data are consistent with a specifi ed parameter value, and the 
confi dence interval contains those parameter values with 
which the data are consistent. Therefore, a 5% signifi cance test 
and a 95% confi dence interval contain some information in 
common: signifi cance implies that the null hypothesis value is 
outside the confi dence interval; non-signifi cance implies that 
the null hypothesis value is within the confi dence interval. 
However, the confi dence interval contains more information 
because it is equivalent to performing a signifi cance test for all 
values of the parameter, not just a single value. A confi dence 
interval enables a reader to see how large the effect may be, 
not simply whether it is different from zero.

The limitations of the interpretations that are provided by 
a signifi cance test may now be considered.

The difference is signifi cant. This means that there is a 
difference or, in other words, the size of the difference is 
not zero. We know no more than this. The difference may be 
large and of great importance or it may be small and of no 
practical importance. It is unsatisfactory that the test pro-
vides no way of distinguishing between these quite different 
possibilities.

The difference is not signifi cant. This means that there is 
insuffi cient evidence to enable us to conclude that there is a 
difference. So the difference may well be zero. But this is not 
the same as saying that it is zero. The true difference may be 
quite large. Again, it is unsatisfactory that this possibility is 
not addressed.

The conclusions that may be drawn from a signifi cance 
test are considered to be incomplete because it is rarely that 
one is interested solely in whether a null hypothesis is or is 
not true; indeed in many cases it may be recognized at the 
outset that the null hypothesis is unlikely to be true. Rather, 
the question is how large is the difference and is it possibly 
large enough to be important? The emphasis is on  measuring 
rather than on testing. The addition of the concept of an 
important difference to that of a null hypothesis means that 
there are four possible interpretations to an analysis: (a) the 
difference is signifi cant and large enough to be of practical 
importance; (b) the difference is signifi cant but too small 
to be of practical importance; (c) the difference is not 
signifi cant but may be large enough to be important; and 
(d) the difference is not signifi cant and also not large enough 
to be of practical importance.

The size of difference that is considered to be large enough 
to be important is a matter for debate, and genuine differ-
ences of opinion may arise. It is a medical, not a statistical, 
question, although a medical statistician who is experienced 
in the subject area could contribute to setting a value. The fact 
that agreement on a unique value may be impossible in no 
way detracts from the argument. In fact, expressing the results 
as a confi dence interval enables interpretations to be made for 
any particular value that is considered appropriate.

These possibilities are illustrated in the Figure where 
the confi dence intervals are shown. The signifi cant and 

Figure Confi dence intervals showing four possible conclusions in 
terms of statistical signifi cance and practical importance.

Difference

Important

Null
hypothesis

(a) (b)

Significant

Important Not important Inconclusive True negative
result

Not significant

(c) (d)

0
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non-signifi cant cases are distinguished by the confi dence 
intervals that exclude or include zero respectively. The main 
point is that in each case the confi dence interval gives the 
range of possible values for the true difference. Of particular 
concern is (c). Here there may be no true difference or there 
may be a large, important difference. In other words the study 
is completely inconclusive. Such a possibility is missed by 
the simple expression “not signifi cant” with its lure of equat-
ing this falsely with “no effect”. This situation will arise with 
a study that is carried out on too small a sample and this 
is why good study design demands attention to sample size 
to try to prevent the occurrence of an inconclusive result. 
Altman found that it was common for undue emphasis 
to be placed on “negative” fi ndings from small studies,2 
while Freimen et al. noted that “negative” trials were often 
too small to constitute a fair test of therapies.3 Similarly, 
a signifi cance test will contrast (b) as signifi cant and (d) as 
not signifi cant but fails to recognize that they give essentially 
the same conclusion — that any difference is too small to be 
important.

As an example, consider some results which were obtained 
by Garraway et al. from a clinical trial for the management 
of acute stroke in the elderly.4 Of 155 patients who were 
 managed in a stroke unit, 78 were assessed as independent 
when they were discharged from the unit compared with 
49 of 152 who were managed in a medical unit. The simplest 
analysis shows that the difference between the success rates 
of the two units is signifi cant at the 1% level. Therefore, a 
genuine effect has been established. To appreciate the impor-
tance of this effect the advantage of the stroke unit may be 
measured by the difference between the two units in the 
percentage of subjects who were discharged as independent: 
50.3% − 32.2% = 18.1%. This is the point estimate. The 

accuracy of this estimate is given by its standard error (5.5) 
and the 95% confi dence limits (7.3% and 28.9%). Thus, the 
gain could be as large as 29% or as small as 7%.

Recently, Gardner and Altman have argued against the 
excessive use of hypothesis testing and urged a greater use of 
confi dence intervals.5 In an appendix to their paper they give 
methods to calculate confi dence intervals for the commonly 
occurring two-sample comparisons.

In presenting the main results of a study it is good 
practice to provide confi dence intervals rather than to restrict 
the analysis to signifi cance tests. Only by so doing can authors 
give readers suffi cient information for a proper conclusion to 
be drawn; otherwise readers have to rely upon the authors’ 
own interpretation.2 Therefore, intending authors are urged 
to express their main conclusions in confi dence interval form 
(possibly with the addition of a signifi cance test, although 
strictly that would provide no extra information). One of 
the aims of the Journal’s statistical review process will be to 
ensure that where possible this is done.
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Introduction
Several population based studies have shown that type 2 
diabetes increases the risk of dementia.1–5 Cognitive decline 
is an intermediate stage between normal ageing and 
dementia.6 As dementia may be most effectively delayed in its 

initial stages, identifying diabetes as a modifi able risk factor 
for early cognitive decline could be of major public health 
importance. Estimates in the United States indicate that 
delaying onset of dementia by one year could lead to 800 000 
fewer cases after 50 years.7

Though many investigations have examined diabetes 
in relation to early cognitive decline,5, 8–19 only one large 
prospective study has focused on women.8 Type 2 diabetes 
disproportionately affects older women and is a stronger risk 
factor for cardiovascular disease in women than in men.20 
As cardiovascular disease is an independent risk factor 
for cognitive decline, we need to determine the impact of 
diabetes on cognition in women.20 Moreover, few studies have 
evaluated the infl uence of different treatments for diabetes on 
the association between type 2 diabetes and cognition.

We assessed the associations between type 2 diabetes, 
different treatments for diabetes, and cognitive function in 
more than 16 000 women.

Abstract
Objective To examine the association of type 2 diabetes with baseline cognitive function and cognitive decline over two 
years of follow up, focusing on women living in the community and on the effects of treatments for diabetes.
Design Nurses’ health study in the United States. Two cognitive interviews were carried out by telephone during 
1995–2003.
Participants 18 999 women aged 70–81 years who had been registered nurses completed the baseline interview; to date, 
16 596 participants have completed follow up interviews after two years.
Main outcome measures Cognitive assessments included telephone interview of cognitive status, immediate and 
delayed recalls of the East Boston memory test, test of verbal fl uency, delayed recall of 10 word list, and digit span back-
wards. Global scores were calculated by averaging the results of all tests with z scores.
Results After multivariate adjustment, women with type 2 diabetes performed worse on all cognitive tests than women 
without diabetes at baseline. For example, women with diabetes were at 25–35% increased odds of poor baseline score 
(defi ned as bottom 10% of the distribution) compared with women without diabetes on the telephone interview of cogni-
tive status and the global composite score (odds ratios 1.34, 95% confi dence interval 1.14 to 1.57, and 1.26, 1.06 to 1.51, 
respectively). Odds of poor cognition were particularly high for women who had had diabetes for a long time (1.52, 1.15 
to 1.99, and 1.49, 1.11 to 2.00, respectively, for 15 years’ duration). In contrast, women with diabetes who were on 
oral hypoglycaemic agents performed similarly to women without diabetes (1.06 and 0.99), while women not using any 
medication had the greatest odds of poor performance (1.71, 1.28 to 2.281, and 1.45, 1.04 to 2.02) compared with women 
without diabetes. There was also a modest increase in odds of poor cognition among women using insulin treatment. 
All fi ndings were similar when cognitive decline was examined over time.
Conclusions Women with type 2 diabetes had increased odds of poor cognitive function and substantial cognitive decline. 
Use of oral hypoglycaemic therapy, however, may ameliorate risk.
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Methods
The nurses’ health study is a prospective cohort of 121 700 US 
female registered nurses, who were aged 30–55 years in 1976, 
when the study began. Participants’ health information has 
been updated with biennial mailed questionnaires. Over 90% 
of the original cohort have been followed up to date.

From 1995–2001, participants aged 70 years and older 
who had not had a stroke were given baseline cognitive 
assessments by telephone. Overall, 93% completed the 
interview. Interviewers were blinded to participants’ health 
status (including diabetes). For the baseline analyses of 
cognitive function, we included 18 999 women with  complete 
information on education and without type 1 diabetes, 
gestational diabetes, or unconfi rmed diabetes (see below).

The follow up cognitive assessment began about two 
years after the baseline interview. After the exclusion of the 
3% who died, calls have been attempted for 98% to date. 
Of these, 92% (n  16 596) completed the interview, 5% 
(n  967) refused, 3% (n  526) were unreachable. For 
analyses of cognitive decline, we included 16 596  participants 
who completed both assessments and excluded women in 
whom diabetes had been newly diagnosed between the 
 baseline and second interviews.

Assessment of cognitive function
Our cognitive assessment has been previously described.21 

Briefl y, we initially administered only the telephone inter-
view for cognitive status (TICS) (n  18 999)22 but gradually 
added more tests: immediate (n  18 295) and delayed recalls 
of the East Boston memory test (n  18 268), test of verbal 
fl uency (naming animals, n  18 285), digit span backwards 
(n  16 591), and delayed recall of a 10 word list (n  16 582). 
To summarise performance, we calculated a global score 
averaging results of the six tests using z scores (16 563 
women completed all six tests).

We have established high validity (r  0.81 comparing the 
global score from our telephone interview to an in-person 
exam) and high reliability (r  0.70 for two administrations 
of the TICS, 31 days apart)21 for these telephone interviews in 
highly educated women.

Ascertainment of type 2 diabetes
We identifi ed women who reported that diabetes had been 
diagnosed by a physician before the baseline cognitive 
interview. We then confi rmed reports based on responses 
to a supplementary questionnaire including complications, 
diagnostic tests, and treatment; confi rmations conformed to 
guidelines of the National Diabetes Data Group23 until 1997, 
and revised criteria of the American Diabetes Association 
from 1998.24 Validation studies found 98% concordance 
of our nurse participants’ reports of type 2 diabetes with 
medical records.25 We estimated duration of diabetes by 
subtracting date of diagnosis from date of baseline  cognitive 
interview. We obtained information on recent drug  treatment 
for diabetes from the biennial questionnaire before the 
baseline interview.

Statistical analyses
Baseline analyses—We examined the relation between type 2 
diabetes and cognitive performance by comparing “poor 
scorers” to remaining women. “Poor scorers” on the TICS 
were those who scored <31 points (a pre-established cut 
off point21); on other tests, we defi ned poor scorers as those 
below the lowest 10th centile (7 for immediate recall 
and 6 for delayed recall on Boston memory test, 11 for 
verbal fl uency test, 0 for delayed recall of the TICS 
10 words list, and 3 for digit span backwards). Multivariate 
adjusted odds ratios of a poor score and 95% confi dence 
intervals were calculated with logistic regression models. 
We also analysed scores continuously using multiple  linear 
regression to obtain adjusted differences in mean score 
between women with and without diabetes.

Analyses of cognitive decline—We used logistic regression to 
calculate odds ratios of “substantial decline,” defi ned as the 
worst 10% of the distribution of change from the baseline to 
the second interview (with cut off points for decline of 4 on 
the TICS, 6 on the category fl uency test, and 3 on the other 
tests). We also used linear regression to estimate adjusted 
mean differences in decline by diabetes status.

Potential confounding factors—Data on potential 
 confounders were identifi ed from information provided as of 
the questionnaire immediately before the baseline cognitive 
assessment. All potential confounding variables were selected 
a priori based on risk factors for cognitive function in the 
existing literature (see tables 3 and 4). In analyses of cognitive 
decline, we adjusted for baseline performance.26

Results
At baseline interview 7.3% (n  1394) of the women had type 2 
diabetes, with a mean duration of 12 years since diagnosis. 
Of the 1248 women with diabetes who completed the most 
recent questionnaire, 901 reported recent  medication for 
management of diabetes (294 (33%) insulin, 607 (67%) 
oral hypoglycaemic agents). As expected, women with 
diabetes had higher prevalence of several comorbid condi-
tions (hypertension, high cholesterol, heart disease, obesity, 
depression) than women without diabetes (table 1), and 
used hormone therapy less and drank less alcohol. On every 
cognitive test, mean baseline scores were lower for women 
with diabetes (table 2).

We focused analyses on two measures of general cogni-
tive function: the TICS and the global score (table 3). After 
we adjusted for potential confounding factors, women with 
diabetes were at 25–35% increased odds of poor baseline 
score compared with women without diabetes (odds ratio 
1.34, 95% confi dence interval 1.14 to 1.57, for TICS and 1.26, 
1.06 to 1.51, for global score). Findings were consistent when 
we examined mean differences in scores; the mean score for 
women with diabetes was lower by 0.42 points, 0.58 to 
0.27 points, on the TICS and by 0.09 units, 0.12 to 0.05 
units, on the global score compared with women without 
diabetes. Associations became stronger with longer duration 
of diabetes. For those with diabetes for  15 years the odds 
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Table 2 Mean cognitive test scores at baseline in women aged 70–81, according to type 2 diabetes. 
Figures are means (SD)

Test (range of scores) Without diabetes With diabetes

TICS (8–41 points) 33.8 (2.8) 33.2 (2.9)
TICS 10 word list—delayed (0–10 points) 2.3 (2.0) 2.0 (1.9)
Global score (4–2 standard units) 0.005 (0.6) –0.1 (0.6)
East Boston memory test—immediate recall (0–12 points) 9.4 (1.7) 9.3 (1.8)
East Boston memory test—delayed (0–12 points) 9.0 (2.0) 8.9 (2.1)
Verbal fl uency test (0–38 points) 16.9 (4.7) 16.3 (4.6)
Digit span backwards (0–12) 6.7 (2.4) 6.4 (2.4)

TICS  telephone interview of cognitive status.

Table 1 Characteristics of women aged 70–81 years, according to type 2 diabetes. Figures are percentage 
of respondents unless stated otherwise*

Without diabetes With diabetes

No of participants 17 605 1394

Mean age (years) 74.2 74.2

Masters or doctorate degree 5.8 5.0

History of hypertension 53.2 78.1

History of hypercholesterolaemia 64.0 75.5

History of heart disease 5.2 15.2

Obesity (body mass index 30 kg/m2) 15.3 38.8

Self perceived low energy (<55 in SF-36 energy-fatigue index) 13.4 24.7

Self perceived depression (<52 in SF-36 mental health index) 2.6 5.0

Current antidepressant use 5.3 7.9

Current regular aspirin use 37.8 42.0

Current regular use of other non-steroidal infl ammatory drugs 17.1 18.2

Current use of vitamin E 41.9 37.2

Current use of postmenopausal hormone 32.6 22.0

Mean (SD) age at menopause in years 48.3 (6.4) 47.7 (6.8)

Median physical activity in metabolic equivalents/week 
(25th–75th centile)

9.8 (3.2–21.9) 4.3 (1.0–14.0)

Current smoking 8.7 6.0
Median alcohol intake in g/day (25th–75th centile) 1.0 (0.0–6.4) 0.0 (0.0–0.9)

* Characteristics from questionnaire immediately before baseline cognitive test. Type 2 diabetes defi ned as 
diagnosis at any time before baseline cognitive test.

of poor cognitive performance was 50% higher than for 
women without diabetes (1.52, 1.15 to 1.99, and 1.49, 1.11 to 
2.00, respectively).

Odds of poor performance also seemed to differ across 
treatment groups (table 3). Compared with women  without 
diabetes, we found high odds of poor performance for 

women with diabetes who did not report  pharmaceutical 
treatment (1.71, 1.28 to 2.28, and 1.45, 1.04 to 2.02, respec-
tively). Those taking insulin also had modestly increased odds 
of poor cognition (1.20, 0.85 to 1.70, and 1.38, 0.97 to 1.95, 
respectively). In the more powerful analyses of mean dif-
ferences, the worst performance was among women using 
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Table 3 Diabetes, duration of diabetes, and use of medication for diabetes in women aged 70–81 in relation to baseline 
cognitive function

Odds ratio of poor cognitive 
performance (95% CI)

Mean difference in cognitive 
performance (95% CI)

% of 
women

TICS 
(n = 18 999)

Global score* 
(n = 16 563)

TICS (n = 18 999) Global score* 
(n = 16 563)

Diagnosis
No diabetes 92.7 1.00 1.00 0 0
Diabetes:
 Adjusted for age and education 7.3 1.44 

(1.24 to 1.69)
1.37 
(1.16 to 1.63)

0.55 
(0.70 to 0.41)

0.11 
(0.15 to 0.08)

 Multivariate adjusted† 7.3 1.34 
(1.14 to 1.57)

1.26 
(1.06 to 1.51)

0.42 
(0.58 to 0.27)

0.09 
(0.12 to 0.05)

Duration of diabetes (years)
No diabetes 92.7 1.00 1.00 0 0
Adjusted for age and education:
 4 1.5 1.35 

(0.97 to 1.88)
1.53 
(1.08 to 2.18)

0.37 
(0.69 to 0.06)

0.10 
(0.17 to 0.03)

 5–9 2.1 1.16 
(0.86 to 1.58)

0.91 
(0.64 to 1.31)

0.51 
(0.79 to 0.24)

0.09 
(0.15 to 0.03)

 10–14 1.6 1.59 
(1.17 to 2.16)

1.44 
(1.03 to 2.02)

0.68 
(1.00 to 0.37)

0.12 
(0.19 to 0.05)

 15 2.1 1.69 
(1.30 to 2.21)

1.68 
(1.27 to 2.24)

0.63 
(0.91 to 0.36)

0.14 
(0.21 to 0.08)

  P for trend <0.0001 <0.0001 <0.0001 <0.0001
Multivariate adjusted†:
 4 1.5 1.27 

(0.91 to 1.79)
1.48 
(1.03 to 2.11)

0.27 
(0.59 to 0.04)

0.08 
(0.16 to 0.01)

 5–9 2.1 1.10 
(0.81 to 1.50)

0.86 
(0.60 to 1.25)

0.41 
(0.69 to 0.14)

0.07 
(0.13 to 0.01)

 10–14 1.6 1.48 
(1.08 to 2.02)

1.31 
(0.93 to 1.85)

0.53 
(0.84 to 0.22)

0.09 
(0.16 to 0.02)

 15 2.1 1.52 
(1.15 to 1.99)

1.49 
(1.11 to 2.00)

0.46 
(0.73 to 0.18)

0.11 
(0.17 to 0.04)

  P for trend 0.0002 0.007 <0.0001 <0.0001

Continued

insulin (mean differences 0.40, 0.72 to 0.09, and 0.11, 
0.18 to 0.03, respectively). In contrast, those taking oral 
medications had similar odds of poor cognitive performance 
as those without diabetes (odds ratios 1.06, 0.81 to 1.37, and 
0.99, 0.74 to 1.33, respectively) and had the smallest mean 
difference in score (mean differences 0.35, 0.58 to 0.13, 
and 0.06, 0.11 to 0.01, respectively).

As cognitive impairment may be a cause rather than a 
consequence of not taking medications, we also examined 
use of medication at time of diagnosis (average of 12 years 
before cognitive assessment). However, results were similar: 
the odds ratios for poor score were 1.61, 1.19 to 2.16, and 1.43, 
1.02 to 2.00, respectively, for women with diabetes who were 

not taking medication at diagnosis compared with women 
without diabetes.

In addition, as duration of diabetes, medication use, and 
level of control are correlated we conducted additional analy-
ses to try to assess their independent effects. The results for 
duration of diabetes were largely similar after we adjusted for 
medication use, and results for medication use were largely 
unchanged after we included a term for duration in the model 
or stratifi ed by duration of  diabetes. For example, among 
women with diabetes, those not taking medication had a 
higher risk of poor cognitive performance on the TICS com-
pared with those taking oral medication both in the group 
with duration of diabetes <10 years (1.73, 1.01 to 2.98) and 
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10 years (1.90, 1.04 to 3.48). Furthermore, although we did 
not have detailed information on level of control (for example, 
data on  haemoglobin A

1c 
concentration), all results were gen-

erally unchanged when we excluded data from women with 
metabolic complications (for instance, those with severely 
uncontrolled disease).

Finally, we restricted analyses to participants who did 
not report any diffi culty with hearing (n  12 099) to reduce 
confounding by hearing status. The results were similar when 
we compared women with and without diabetes (1.45, 1.18 to 
1.78, and 1.37, 1.10 to 1.71, respectively).

Prospective analyses of decline
Although cognitive decline was measured over just a two 
year period, we observed a signifi cantly increased odds of 
substantial decline on the TICS (1.26, 1.03 to 1.54) for women 
compared with women without type 2 diabetes (table 4). 
However, we observed little overall relation between diabetes 
and decline on the global score (1.11, 0.90 to 1.37). Similarly, 

mean decline was greater among women with diabetes 
by 0.17 points (0.33 to 0.01) on the TICS but was 
comparable in the two groups on the global score (mean 
difference in decline 0.01, 0.04 to 0.03). In addition, 
qualitative relations with longer duration diabetes and use 
of medication were generally similar to those observed with 
baseline cognitive function.

Discussion
In this large prospective study of women aged 70–81 years 
with type 2 diabetes who were living in the community we 
found that they had marginally worse baseline cognitive 
performance and greater cognitive decline than women 
without diabetes. Longer duration of diabetes resulted in 
larger associations. However, women who said they were on 
hypoglycaemic treatment seemed to have a similar likelihood 
of poor cognition as women without diabetes, while women 
not taking medication for diabetes or those taking insulin had 
worse performance.

Table 3 Continued

Odds ratio of poor cognitive 
performance (95% CI)

Mean difference in cognitive 
performance (95% CI)

% of 
women

TICS 
(n = 18 999)

Global score* 
(n = 16 563)

TICS (n = 18 999) Global score* 
(n = 16 563)

Medication‡
No diabetes 92.7 1.00 1.00 0 0
Adjusted for age and education:
 Insulin 1.5 1.27 

(0.91 to 1.78)
1.48 
(1.06 to 2.08)

0.55 
(0.86 to 0.23)

0.14 
(0.20 to 0.07)

 Oral medication 3.2 1.05 
(0.82 to 1.36)

0.99 
(0.74 to 1.31)

0.40 
(0.62 to 0.18)

0.06 
(0.11 to 0.01)

 No reported treatment 1.8 1.70 
(1.28 to 2.26)

1.43 
(1.03 to 1.98)

0.42 
(0.71 to 0.13)

0.09 
(0.16 to 0.02)

Multivariate adjusted†:
 Insulin 1.5 1.20 

(0.85 to 1.70)
1.38 
(0.97 to 1.95)

0.40 
(0.72 to 0.09)

0.11 
(0.18 to 0.03)

 Oral medication 3.2 1.06 
(0.81 to 1.37)

0.99 
(0.74 to 1.33)

0.35 
(0.58 to 0.13)

0.06 
(0.11 to 0.01)

 No reported treatment 1.8 1.71 
(1.28 to 2.28)

1.45 
(1.04 to 2.02)

0.38 
(0.67 to 0.09)

0.08 
(0.15 to 0.01)

TICS  telephone interview of cognitive status.

* Global score combines TICS, test of verbal fl uency, delayed recall of TICS 10 word list, digit backwards test, immediate and 
delayed recalls of East Boston memory test.
† Adjusted for age at interview (years), highest attained education (registered nurse diploma, Bachelor’s degree, Master’s or 
Doctoral degree), history of high cholesterol (yes, no), history of high blood pressure (yes, no), use of vitamin E supplement 
(currently yes, no), age at menopause (<50, 50–52, 53 years), body mass index (<22, 22–24.9, 25–29.9, 30 kg/m2), cigarette 
smoking (current, past, never), antidepressant use (yes, no), alcohol intake (0, 1–4, 5–14, 15 g/day), use of aspirin (current use 
1–5 times/week, use 6 times/week, no), use of other NSAID (current use, no), postmenopausal hormone use (currently yes, no), 
mental health index (0–52, 52–100), and energy-fatigue index (0–54, 55–100) from SF-36.
‡ Data on medication use from questionnaire immediately before baseline cognitive assessment. Percentages do not total 100% as 
0.8% who did not respond to medication question are not presented.

Peat_Unit 1_Logroscino.indd   14Peat_Unit 1_Logroscino.indd   14 6/13/2008   12:09:18 PM6/13/2008   12:09:18 PM



Originally published in BMJ 2004; 328. Reproduced with permission.

UNIT 1  Hypothesis testing and estimation   15

Table 4 Diabetes, duration of diabetes, use of medication for diabetes in women aged 70–81 in relation to cognitive 
decline over two years

Odds ratio of substantial decline 
(95% CI)

Mean difference in cognitive decline 
(95% CI)

% TICS 
(n = 16 596)

Global score* 
(n = 14 470)

TICS (n = 16 596) Global score* 
(n = 14 470)

Diagnosis
No diabetes 92.9 1.00 1.00 0 0
Diabetes:
 Adjusted for age and education 7.1 1.36 

(1.12 to 1.65)
1.20 
(0.97 to 1.47)

0.29 
(0.44 to 0.13)

0.03 
(0.06 to 0.00)

 Multivariate adjusted† 7.1 1.26 
(1.03 to 1.54)

1.10 
(0.89 to 1.37)

0.17 
(0.33 to 0.01)

0.01 
(0.04 to 0.02)

Duration of diabetes (years)
No diabetes 92.9 1.00 1.00 0 0
Adjusted for age and education:
 4 1.6 1.25 

(0.83 to 1.88)
0.68 
(0.40 to 1.17)

0.04 
(0.28 to 0.35)

0.05 
(0.01 to 0.12)

 5–9 2.0 1.08 
(0.74 to 1.59)

1.08 
(0.73 to 1.59)

0.10 
(0.38 to 0.18)

0.01 
(0.05 to 0.06)

 10–14 1.6 1.35 
(0.90 to 2.02)

1.53 
(1.03 to 2.27)

0.36 
(0.67 to –0.04)

0.09 
(0.15 to –0.03)

 15 1.9 1.77 
(1.27 to 2.47)

1.51 
(1.05 to 2.15)

0.68 
(0.97 to 0.40)

0.08 
(0.13 to 0.02)

  P for trend 0.0004 0.005 <0.0001 0.001
Multivariate adjusted:
 4 1.6 1.15 

(0.76 to 1.74)
0.65 
(0.38 to 1.12)

0.14 
(0.18 to 0.46)

0.07 (0.01 to 
0.13)

 5–9 2.0 1.00 
(0.68 to 1.47)

1.01 
(0.68 to 1.49)

0.01 
(0.29 to 0.27)

0.02 
(0.04 to 0.07)

 10–14 1.6 1.26 
(0.83 to 1.90)

1.40 
(0.94 to 2.09)

0.23 
(0.55 to 0.09)

0.07 
(0.13 to 0.00)

 15 1.9 1.64 
(1.17 to 2.30)

1.35 
(0.93 to 1.94)

0.54 
(0.83 to 0.25)

0.05 
(0.11 to 0.01)

  P for trend 0.005 0.05 0.0004 0.05

Continued

A major strength of our study is the large sample size for 
assessing the relations between type 2 diabetes, duration, 
treatment, and cognition. Other strengths are the prospec-
tive assessment of diabetes and potential confounders over 
25 years of follow up and the relative homogeneity of the 
sample in terms of education and access to health care, 
which should minimise confounding.

Limitations
Limitations should be considered. Firstly, as we relied on the 
women reporting their own diabetes status, we may have 
included some women with undiagnosed diabetes in the 
reference group, which could have led to underestimation 
of the true associations. However, undiagnosed diabetes 

was probably rare in these nurses. Among a random sample 
of those with no reported diabetes, plasma samples indicated 
just 2% had diagnostic signs of type 2 diabetes. Secondly, 
as in all studies of cognitive decline, there is regression to 
the mean on the repeat cognitive assessment. As women 
with type 2 diabetes had worse cognitive performance 
at baseline, regression to the mean would probably have 
attenuated the true magnitude of cognitive decline associated 
with diabetes.

In addition, there are important issues to consider in inter-
preting our fi ndings regarding pharmaceutical treatment of 
diabetes. Participants who were not taking any treatment for 
diabetes probably included a heterogeneous group of women 
with untreated diabetes and diabetes controlled through 

Peat_Unit 1_Logroscino.indd   15Peat_Unit 1_Logroscino.indd   15 6/13/2008   12:09:18 PM6/13/2008   12:09:18 PM



Originally published in BMJ 2004; 328. Reproduced with permission.

16   UNIT 1  Hypothesis testing and estimation

Table 4 Continued

Odds ratio of substantial decline 
(95% CI)

Mean difference in cognitive decline 
(95% CI)

% TICS 
(n = 16 596)

Global score* 
(n = 14 470)

TICS (n = 16 596) Global score* 
(n = 14 470)

Medication‡
No diabetes 92.9 1.00 1.00 0 0

Adjusted for age and education:
 Insulin 1.5 1.49 

(0.99 to 2.25)
1.22 
(0.79 to 1.89)

0.59
(0.92 to 0.26)

0.08 
(0.15 to 0.01)

 Oral medication 3.1 1.12 
(0.82 to 1.51)

0.82 
(0.58 to 1.14)

0.00
(0.22 to 0.23)

0.02 (0.03 to 
0.06)

 No reported treatment 1.8 1.35 
(0.93 to 1.95)

1.67 
(1.18 to 2.37)

0.27
(0.56 to 0.03)

0.02 
(0.08 to 0.04)

Multivariate adjusted:
 Insulin 1.5 1.39 

(0.91 to 2.10)
1.08 
(0.69 to 1.68)

0.44
(0.77 to 0.11)

0.05 
(0.12 to 0.02)

 Oral medication 3.1 1.09 
(0.80 to 1.48)

0.77 
(0.54 to 1.08)

0.07
(0.16 to 0.30)

0.03 
(0.02 to 0.08)

 No reported treatment 1.8 1.31 
(0.90 to 1.90)

1.62 
(1.13 to 2.30)

0.23
(0.53 to 0.06)

0.02 
(0.08 to 0.05)

TICS  telephone interview of cognitive status.

* Global score combines TICS, test of verbal fl uency, delayed recall of TICS 10 word list, digit backwards test, immediate and 
delayed recalls of East Boston memory test.
† Adjusted for age at interview (years), highest attained education (registered nurse diploma, Bachelor’s degree, Master’s or 
Doctoral degree), history of high cholesterol (yes, no), history of high blood pressure (yes, no), use of vitamin E supplement 
(currently yes, no), age at menopause (<50, 50–52, 53 years), body mass index (<22, 22–24.9, 25–29.9, 30 kg/m2), cigarette 
smoking (current, past, never), antidepressant use (yes, no), alcohol intake (0, 1–4, 5–14, 15 g/day), use of aspirin (current use 
1–5 times/week, use 6 times/week, no), use of other NSAID (current use, no), postmenopausal hormone use (currently yes, no), 
mental health index (0–52, 52–100), and energy-fatigue index (0–54, 55–100) from SF-36.
‡ Data on medication use from questionnaire immediately before baseline cognitive assessment. Percentages do not total 100% as 
0.8% who did not respond to medication question are not presented.

diet. Diabetes that can be controlled through diet may not 
be associated with poor cognition.14 Thus, we have probably 
underestimated the effect of untreated diabetes. However, 
the increased odds of poor cognition associated with no 
treatment was similar across those with shorter and longer 
duration of diabetes (and duration is probably a good indi-
cator of prevalence of dietary control), suggesting that our 
underestimate may be minimal.

What is already known on this topic
Many epidemiological studies have shown that type 2 
diabetes increases the risk of cognitive decline, though most 
studies have been in men

Type 2 diabetes is associated with greater risk of cardiovascu-
lar disease in women than in men, and cardiovascular disease 
may increase the risk of cognitive decline

What this study adds
Women with type 2 diabetes have about 30% greater odds of 
poor cognitive function than those without diabetes, with a 
50% increase after 15 years’ of diabetes

Women with diabetes who did not report medical treatment 
had the highest risk of poor cognitive function and substan-
tial cognitive decline

Women with diabetes who reported taking oral medication 
had a similar risk of cognitive decline as women without 
diabetes

Though our fi nding that insulin treatment was associated 
with poor cognitive performance is consistent with results of 
other studies of cognition,8,14 it is diffi cult to draw conclu-
sions; people with diabetes who use insulin all have longer 
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duration of diabetes, worse control, and higher prevalence of 
hypoglycaemic attacks, rendering it hard to adjust appropri-
ately for confounding. None the less, there is growing evidence 
directly linking insulin to cognitive impairment: chronic 
hyperinsulinaemia10 and incremental increases in serum insulin 
concentration after a glucose load13 predict diminished 
cognition in the absence of diabetes or glucose intolerance. 
Moreover, insulin degrading enzyme regulates concentrations 
of both insulin and amyloid β in the brain27 and infusion of 
insulin into healthy humans increases amyloid β concentra-
tions in the cerebrospinal fl uid,28 further supporting a direct 
association between insulin and cognition.

Finally, consistent with our fi ndings of similar cognitive 
performance among women taking oral medication and 
those without diabetes, in a controlled trial of  participants 
with type 2 diabetes, Testa and Simonson noted that improved 
glucose control with oral medications resulted in better 
cognitive acuity, memory, and orientation.29 In addition, an 
observational study of Mexican-Americans with diabetes 
reported signifi cantly less cognitive decline in those with 
medical treatment than without.30 Thus, although physicians 
may avoid prescribing oral therapy for diabetes in older peo-
ple, it may be important to their cognitive health.

Conclusions
In conclusion, we found worse cognitive function and 
accelerated cognitive decline among women with type 2 
diabetes, which seemed to be ameliorated with oral 
hypoglycaemic treatment. Studies have established that, in 
apparently healthy people, even modest differences in cog-
nition result in substantially increased risks of dementia 
over several years.6 Prevention and control of type 2 diabe-
tes in women could have critically important public health 
consequences.
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Background

In assessing the health status of a population, we are often 
interested in statistics such as how many people have a 
 disease at a single point in time, the rate at which new cases 
occur or how many people die as the result of a certain 
illness. Calculating these statistics is vital for tracking 
whether disease rates are declining or increasing, and for 
assessing whether medical or population interventions are 
effective in promoting health and prolonging life. Tracking 
disease patterns can also lead to hypotheses about possible 
causal or preventive factors and knowledge of these factors 
can be vital for developing interventions that have the poten-
tial to lead to better health.

When estimating disease statistics, it is important that 
the population is carefully defi ned so that the statistics 
can be generalised to other populations with the same 
characteristics. A population is a section of society in which 
we may be interested, for example all children aged between 
7 and 11 years in a defi ned rural region or all women aged 

Aims

To understand the requirements for measuring incidence 
and prevalence accurately and how the sample size  infl uences 
the precision in estimating these rates.

over 60 years living in a local government area. When the 
population is too large to measure the characteristics of 
each person individually, a sample of the population is 
usually selected. If the sample is large enough and is selected 
randomly, then the characteristics of the sample are likely 
to be representative of the whole population and infer-
ences to the ‘true’ rate of illness in the population can be 
made. The most reliable estimates of incidence and preva-
lence rates are obtained from large population samples in 
which a random, and therefore representative, sample is 
enrolled. Although there may be sampling error despite 
random sampling – that is, each sample may give a slightly 
 different estimate or rate –  sampling errors become smaller 
as the size of the sample increases. However, sometimes a 
study sample may be a convenience sample selected from 
a group of people who are readily available, for example 
people who attend a certain health care clinic or hospital. 
It is important to remember that a population who 
self-select themselves into a health care service may not be a 
representative sample of the population in which they live, 
that is, the population in a defi ned geographic region around 
the hospital.

The terms ‘incidence’ and ‘prevalence’ are used to describe 
the rate at which a condition occurs in a population 
sample. A common mistake in the reporting of frequency 
rates is to use these two terms interchangeably although they 
have entirely different meanings. For any given population, 
the term ‘incidence’ describes the number of new cases of the 
condition that occurred in a defi ned time period, whereas 
the term ‘prevalence’ describes the total number of cases with 
the condition at any point in time. The terms incidence and 
prevalence are usually applied to a specifi ed time period, 
such as a 1-year or 5-year interval. Incidence rates are usually 
described directly in terms of the period in which they have 
been measured, for example as number of cases per year. 
However, when the total number of people who have a con-
dition at one point in time, for example at birth, is measured, 
the term ‘point prevalence’ may be used. When the total 
number of people who have ever had the condition during 
a defi ned time is measured, the term ‘cumulative prevalence’ 
may be used.

Learning objectives
On completion of this unit, participants will be able to:

distinguish between the terms incidence and    •

prevalence and understand the situations in which 
each term can be used correctly;
calculate and interpret 95% confi dence intervals    •

around incidence and prevalence rates;
explain why estimates of incidence, remission and    •

death are always lower than estimates of prevalence 
for a given population;
describe the types of bias that infl uence estimates of    •

prevalence and incidence.
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To obtain reliable estimates of incidence or prevalence, 
a study must be carefully designed to minimise bias, 
 especially selection, response and measurement bias. These 
types of bias lead to unreliable estimates of the ‘true’ rate 
of illness and they can occur regardless of the sample size. 
Selection bias occurs if the sample is not selected randomly 
or if the response rate is low and therefore the sample is 
unlikely to be representative of the population from which 
it was drawn. On the other hand, response bias occurs 
when participants self-select themselves into the study 
because of issues related to their health, for example the 
respondents may be healthier or they may have more inter-
est in the illness being investigated than other members 
of the community who decline to participate. Response 
bias can have a signifi cant infl uence on the frequency of 
responses to health care questions and the perceived asso-
ciations between symptoms and exposures. Measurement 
bias, which includes reporting bias, ascertainment bias 
and poor recall of past illness events, can also infl uence 
estimates of incidence and prevalence because the out-
come is not measured accurately. Bias is a major problem 
in research because it leads to incidence and prevalence 
rates being under-estimated or over-estimated, and there-
fore being inaccurate, and the magnitude or direction of 
the bias may not be known.

Measuring incidence and prevalence
To measure incidence, a cohort study is usually conducted 
in which a random sample of the population is enrolled 
and monitored over time. In such studies, new or inci-
dent cases are identifi ed when they develop and, as such, 
they can be distinguished from previously existing, or preva-
lent, cases. On the other hand, to measure a prevalence rate, 
a cross-sectional study can be conducted in which a random 
sample of a population is enrolled from which all cases, 
whether incident or prevalent, are identifi ed at a given point 
or period in time. As such, cross-sectional studies provide a 
useful ‘snap-shot’ of what is happening in a sample of the 
population at a single point in time, and are often used as a 
cheaper alternative to cohort studies for measuring trends in 
the health status of populations. However, to obtain precise 
estimates of prevalence rates, a high response rate of over 
80% should be achieved in order to minimise the effects of 
selection bias.1

The prevalence of a condition in a given time period is the 
number of incident cases, plus the cases who were diagnosed 
(prevalent) prior to the time period, minus any deaths or 
remissions that have occurred. That is,

Prevalence   Incident cases  prior prevalent cases 
 (deaths  remissions)

Because the terms incidence and prevalence are used to 
describe rates of a condition in a population, it is essential 
that the study sample is suffi ciently large to enable calcu-
lation of the rates with precision. When the condition is 
fairly common, incidence and prevalence rates are usually 
described as percentages, for example 10%. When the con-
dition is rare, the rate is given as a number per unit of the 
population, for example 1 case per 10 000 or per 100 000 
children. When a sample is not representative of the popu-
lation, only the terms percentage, proportion or frequency 
should be used to describe disease rates. 

Confi dence intervals
Confi dence intervals can be used to convey the preci-
sion with which an incidence or prevalence rate has been 
estimated. These intervals are calculated from a table, as 
shown in Table 2.1, in which number of participants with 
or without the condition of interest is shown as (a) disease 
present or (b) absent and in which ‘N’ is the total sample 
size. The incidence or prevalence rate is then calculated as a 
proportion of cases (p) in the sample, which is equal to a/N.

The 95% confi dence intervals around an incidence or 
prevalence rate are an estimate of the range in which we are 
95% certain that the true incidence or prevalence rate lies. If 
the incidence or prevalence rate (p) is between 5% and 95%, 
the standard error and the 95% confi dence intervals can be 
calculated using the following formulae:

Incidence or prevalence (p)  a/N
Standard error (SE) =  (p (1  p)/N)
95% confi dence interval  p  (SE  1.96)

The calculations are computed using proportions but both 
the incidence or prevalence rate (p) and the 95% confi -
dence intervals can be converted into percentages simply 
by multiplying by 100. It can be seen from the formula that 
the standard error around an estimate will become smaller 
and therefore more precise as the sample size increases 
because the denominator is the square root of the sample 

Glossary

Term Defi nition

Incidence The number of new cases of a condition that 
develop in a population during a defi ned time 
period.

Prevalence The total number of people in a population 
with a condition a given point in time.

Table 2.1 Estimating incidence or prevalence

Disease present Disease absent Total

Totals a b N
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confi dence interval of the other, as between groups A and B, 
the difference may be signifi cant. When these two groups are 
compared, the P value is statistically signifi cant at 0.048.

Reporting
When reporting incidence and prevalence rates, it is 
important that the correct number of decimal places is used 
so that only the precision that is provided by the sample 
size is implied. The rules for reporting rates as percentages 
are shown in Table 2.2. When rates are reported as propor-
tions, only one decimal place is used if the sample is less 
than 100, otherwise two decimal places are used.4 To avoid 
multiple decimal places for low rates, the denominator can 
be changed, for example a rate of 0.0062% can be reported as 
6.2 cases per 100 000 children.

TAKE HOME LIST

Estimates of incidence and prevalence rates can be • 
infl uenced by selection, response or measurement bias.

Confi dence intervals can be used to indicate the precision • 
with which an incidence or prevalence rate has been 
estimated.

The degree of overlap of the 95% confi dence intervals • 
between two groups is a guide to whether the difference 
in rates is statistically signifi cant.

size. Therefore, the 95% confi dence intervals will become 
narrower to refl ect this.

If the incidence or prevalence rate is very low, that is 
less than 5%, as in studies of rare diseases, the formula for 
calculating the confi dence interval shown here does not 
approximate well and ‘exact’ confi dence intervals based on 
a binomial distribution may be required. The importance of 
using exact confi dence intervals is that they will not provide 
a negative rate, which would be an invalid value, for the lower 
interval. Exact confi dence intervals are not symmetrical 
around estimates of incidence and prevalence as are the 95% 
confi dence intervals calculated using the formulae above. 
Because the calculations of exact intervals are more complex, 
they are best computed using a dedicated statistical package 
such as the program EpiInfo (www.cdc.gov/EpiInfo).

Comparing groups
When comparing incidence or prevalence rates between 
two populations or groups, the degree of overlap between 
the 95% confi dence intervals is a guide to whether the dif-
ference in rates is statistically signifi cant. Thus, 95% confi -
dence intervals are invaluable for making inferences about a 
P value when the P value is not reported.2,3 Figure 2.1 shows 
three prevalence rates and their 95% confi dence intervals. If 
the intervals do not overlap, as between population samples 
A and C, the rate of disease is signifi cantly different between 
the two groups. When these two rates are compared using a 
chi-square test (as described in Unit 3), the P value is highly 
signifi cant at <0.0001. If there is a large degree of overlap, 
as between population samples B and C where the top of 
the interval for group C is close to the summary statistic for 
group B, the two rates are not signifi cantly different. The 
P value for this comparison is 0.4. If there is some overlap 
but the rate for one population sample is not within the 

Figure 2.1 Bar chart showing estimates of prevalence with 
95% confi dence intervals.
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Table 2.2 Rules for reporting rates as percentages

Rule Example

Report percentages to one 
decimal place if the sample 
size is larger than 100

In the sample of 320 children, 
10.9% had asthma

Report percentages with no 
decimal places if the sample 
size is between 20 and 100

In the sample of 32 children, 
9% had asthma

Do not use percentages if the 
sample size is less than 20

In the sample of 16 children, 
2 had asthma

Reading and questions
Reprint
Langemo D, et al. A quick overview on measuring pressure 
ulcer prevalence and incidence. Adv Skin Wound Care 2007; 
20(12):642–644. (See p. 25.)

After reading Unit 2 and the reprint by Langemo et al. (2007), 
answer the following questions:

What is a cross-sectional study?1 
What is the difference between incidence and prevalence 2 
rates?
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What conditions need to be met for a prevalence rate to be 3 
generalised to the population? 
Why do cohort studies provide an ideal study design for 4 
estimating incidence rates?
What types of bias can infl uence estimates of incidence 5 
and prevalence rates?
How can bias be minimised?6 

Worked example
Set article 1
Toelle BG, Ng K, Belousova E, Salome CM, Peat JK, 
Marks GB. Prevalence of asthma and allergy in schoolchil-
dren in Belmont, Australia: three cross sectional surveys over 
20 years. BMJ 2004;328:386–387. (See p. 27.)

It is sometimes important to know whether the prevalence 
of an illness has increased or decreased in recent years. This 
is often measured by conducting repeat cross-sectional studies 
over time as shown in the article by Toelle et al. (2004). To mea-
sure whether the prevalence of asthma had increased in a region 
of Australia, three cross-sectional studies were conducted in 
1982, 1992 and 2002 in which all children aged between 8 and 
11 years old in schools within a defi ned region were asked to 
participate. Table 2.3 shows the prevalence rates of three of the 
outcomes measured. Although the 95% confi dence intervals 
were not included in the article, they can be easily calculated 
from the numerators and denominators reported using the 
formulae given in this Unit and are shown in Table 2.3.

The article does not report P values for between-year com-
parisons, but the signifi cance of the differences between years 
can be inferred from the 95% confi dence intervals shown in 
Table 2.3. The prevalence rates in 1992 are more than 10% 
higher than in 1982, with a wide gap between confi dence 
intervals indicating that the increase between 1982 and 1992 
would be highly signifi cant, probably at P < 0.0001. In con-
trast, the prevalence rates for 2002 are lower than in 1992. 
The prevalence rates for 1992 are outside the 95% confi dence 
intervals for 2002 indicating a marginally signifi cant decrease 
in prevalence, probably with a P value of 0.05 or slightly lower, 
refl ecting the smaller magnitude of the differences.

The authors conclude that the trajectory of an  increasing 
prevalence of asthma between 1982 and 1992 has not 
continued. In the comment section of the article, it is 
reported that estimates of the rates were more reliable in 
1982 when the response rate was 88% and in 1992 when the 
response rate was 86.9%, than in 2002 when the response rate 
was lower at 66.3%. In 2002, there is a greater possibility of 
selection bias as a result of the lower response rate, and 
therefore a defi nitive conclusion that the prevalence of 
asthma decreased signifi cantly between 1992 and 2002 would 
not be warranted. However, the authors provide evidence 
that the prevalence rates in 2002 were likely to have been 
over-estimated rather than under-estimated and therefore 
that the prevalence of asthma had not continued to increase 
further. Providing evidence of the direction of selection 
bias helps to validate the conclusions. Nevertheless, the 
extent to which increased asthma awareness has  infl uenced 
the results is not known and it is possible that some of 
the large increase in prevalence between 1982 and 1992 
could be explained by ascertainment and reporting bias 
following wide scale asthma awareness campaigns during 
that period.

Quick quiz

After reading the set article by Toelle et al. (2004), tick the 
correct answer for each of the following questions.

What type of study is reported in this article:1 
a longitudinal follow-up study;(a) 
a series of cross-sectional surveys;(b) 
three different case-control studies;(c) 
an ongoing ecological study.(d) 

The differences in prevalence rates between 1982 and 1992 2 
were:

large and signifi cant;(a) 
large and non-signifi cant;(b) 
small and signifi cant;(c) 
small and non-signifi cant.(d) 

Table 2.3 Prevalence of asthma in children aged 8–11 years living in Belmont, Australia

1982 1992 2002

Prevalence 95% CI Prevalence 95% CI Prevalence 95% CI

Total number 718 914 810
Asthma diagnosed 9.1% 7.0, 11.2 38.3% 35.1, 41.4 31.0% 27.8, 34.2
Wheeze in last 12 months 10.4% 8.2, 12.7 28.6% 25.6, 31.5 23.7% 20.8, 26.7
Recent use of asthma medication 9.6% 7.5, 11.0 28.1% 25.2, 31.1 23.2% 20.3, 26.1

Peat_Unit 2.indd   22Peat_Unit 2.indd   22 6/13/2008   2:43:14 PM6/13/2008   2:43:14 PM



UNIT 2  Incidence and prevalence rates   23

The differences in prevalence rates between 1992 and 3 
2002 were:

large and signifi cant;(a) 
large and non-signifi cant;(b) 
small and signifi cant;(c) 
small and non-signifi cant.(d) 

The prevalence rates in 2002 could have been infl uenced 4 
by:

confounding, because the sample was selected (a) 
randomly;

asthma awareness programmes conducted (b) 
since 1982;

measurement error, because methods changed over (c) 
the study period;

selection bias, because the response rate (d) 
was lower.

Critical appraisal

Work through the critical appraisal checklist below to review 
the article by Toelle et al. (2004) and decide whether the 
interpretations of their results are valid.

Exercise
Set article 2
Judd A, Hickman M, Jones S, McDonald T, Parry JV, Stimson 
GV, Hall AJ. Incidence of hepatitis C virus and HIV among 
new injecting drug users in London: prospective cohort 
study. BMJ 2005; 330:24–25. (See p. 29.)

Using the set article by Judd et al. (2005) complete Table 2.4 
by calculating:

the prevalence of antibodies to hepatitis C virus if the  •

number of cases identifi ed in the sample had been 90, 150 
or 165 instead of 187;
the 95% confi dence intervals for each sample size. •

Critical appraisal checklist for an article reporting incidence or prevalence 

Study designA. 

What is the design of the study?1. 

Was the sample randomly selected?2. 

Was the response rate adequate?3. 

Which patient or population group do the results generalise to?4. 

Statistical methodsB. 

Have the terms incidence and/or prevalence been used correctly?5. 

Was the denominator used appropriate?6. 

Are 95% confi dence intervals reported?7. 

ResultsC. 

How precise were the measured rates as indicated by the confi dence intervals?8. 

Are the between-group comparisons that are made valid?9. 

InterpretationD. 

Are the results interpreted correctly?10. 

Table 2.4 Prevalence rates and 95% CI  

Number positive Total number Prevalence (95% CI)

Prevalence rate 1 187 428 43.7 (38.9–48.5)
Prevalence rate 2 90 428
Prevalence rate 3 150 428
Prevalence rate 4 165 428
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Note that in the formula given earlier in this Unit, p is a 
proportion, e.g. 0.4. To convert the values into a prevalence 
rate expressed as a percentage, fi rst calculate the prevalence 
and 95% confi dence intervals using proportions and then 
multiply by 100.

If the four prevalence rates had been collected at yearly  •

intervals over a 4-year period, what inferences could 
be made about signifi cant differences between them by 
comparing the confi dence intervals?
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Pressure ulcers remain a signifi cant concern in the acute 
care, long-term care, rehabilitation, and, to a somewhat lesser 
extent, home care and hospice settings. Determining how 
many individuals are admitted with a pressure ulcer and/or 
develop a pressure ulcer after admission can be  motivating for 
an agency both internally and externally. Internally, this infor-
mation provides each facility with a better perspective on the 
scope of the problem and allows wound care providers to com-
pare these rates with those of similar facilities. The data also 
allow each facility to evaluate its individual pressure ulcer pre-
vention and intervention efforts.1

Defi ning prevalence and incidence
Prevalence is a measure of the proportion of a group that 
has a pressure ulcer at any given time. The time frame may 
be a given day (point prevalence) or during a specifi c time 
period of a week, month, quarter, or year (period prevalence). 
Prevalence can be viewed as a snapshot of a situation. The 
current trend is measuring agency-acquired prevalence, or 
the number of individuals who developed a pressure ulcer 
post-admission and who are present at the time of the 
prevalence audit.

Incidence is a measure of the proportion of a group who is 
pressure ulcer–free at the outset, but who develops a pressure 
ulcer over a given time frame. Incidence refl ects the nosoco-
mial problem of pressure ulcer development and, in essence, 
is a more accurate and sensitive indicator of quality.

Both prevalence and incidence are calculated as a pro-
portion or fraction, with both a numerator and denomi-
nator. The numerator represents a pressure ulcer case or 
patient with an ulcer, rather than an individual ulcer. Each 
individual, whether he or she has 1 or 3 pressure ulcers, is only 
counted 1 time. The denominator of the fraction represents 
the number of individuals who are at risk for pressure ulcer 
development in a given population. An individual is at risk 
if he or she has a likelihood of developing a pressure ulcer if 
exposed to pressure ulcer risk factors. Thus, anyone admitted 
with a pressure ulcer is eliminated from the incidence study. 

The equations for prevalence and incidence follow along with 
an example calculation:

Prevalence rate
Number of patients with a pressure ulcer on the day of data 
collection

Number of patients in the facility who are included in data 
collection  100

Example: 10
120 × 100  12%

Incidence rate
Number of at-risk patients who developed pressure ulcers in the 
time period

Number of at-risk patients admitted during time 
period   100

Example: 05
100  100  5%

Issues in measuring pressure ulcer 
prevalence and incidence
When measuring pressure ulcer prevalence and incidence, it 
does not  matter how many ulcers a patient has, the individual is 
measured/counted only once. The patient is only counted 1 time 
to represent the pressure ulcer problem accurately. The numera-
tor represents the total number of patients with a pressure ulcer. 
Second, patients who are included in the denominator are those 
at risk for developing the disease (pressure ulcer). Consequently, 
outpatient surgery patients, routine obstetric care patients, and 
ambulatory psychiatric patients are not generally included in 
the prevalence or incidence audit. Some facilities choose to 
include all pressure ulcers in a study, whereas others elect to 
include only stages II through IV pressure ulcers. Including 
Stage I pressure ulcers presents the most accurate picture. The 
specifi c criteria used must be included in the reporting.

Prevalence rates may be infl uenced by admission policies 
and vice versa. For example, prevalence includes pressure 
ulcers that developed before admission to the facility; thus, a 
high rate may be refl ective of admission policies. Conversely, a 
facility willing to admit a patient with a pressure ulcer may be 
penalized. For example, the admission could refl ect a higher 
pressure ulcer prevalence rate when the facility is actually 
opening its doors to all patients.

To measure incidence, the clinician follows up patients over 
a given period that is long enough to accurately represent the 
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different perspective on the scope of the problem. As  clinical 
practice moves from a clinically based to a scientifi cally 
based model, providers are meeting the challenge of scientifi -
cally documenting the extent of the pressure ulcer problem 
through prevalence and incidence studies.2
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problem. If a short time is used, the incidence rate may be 
artifi cially low. Conversely, if the time frame is unduly long, 
the rate may be uncharacteristically high. Generally, 1 month 
or 1 quarter is recommended. Incidence rates are generally 
lower than prevalence rates; thus, comparing the 2  presents 
diffi culties. Clinicians should not attempt to compare 
incidence rates measured by different methods.

Conclusions
In summary, although both prevalence and incidence are 
measures of the frequency of a problem, each provides a 
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We have previously shown that the prevalence of asthma in 
Australian primary schoolchildren increased substantially 
between 1982 and 1992.1 Similar increases have been reported 
in studies of children of different ages and from various geo-
graphical regions, spanning periods up to the mid-1990s.2 It 
is not known whether this trend has continued during the late 
1990s and early 2000s. We therefore conducted a third cross 
sectional study in the same population that was surveyed pre-
viously.1 We report here on prevalence trends over the latter 
10 year period.

Participants, methods, and results
We conducted all studies during June and July in primary 
schools in and around Belmont, a coastal suburb some 
150 km north of Sydney, Australia. We invited all children 
in years 3, 4, and 5 (ages 8–11 years) at selected schools to 
participate and studied only children who had parental 
consent. Parents completed a questionnaire about  symptoms, 
diagnosis, and treatment of asthma and other allergic 
illnesses. We used a histamine challenge test to measure airway 
hyperresponsiveness and assessed atopy by skin prick tests 
to house dust, Dermatophagoides farinae, D pterronyssinus, 
ryegrass, cockroach, cat, Alternaría tenuis (Hollistier-Stier, 
Spokane, WA, USA). Questionnaires and tests were the same 
as in 1992.1 The data collected in 1982 are not directly com-
parable because only 8–10 year old children were included 
and some equipment was different1. Owing to a low initial 
response rate in 2002 a single page anonymous questionnaire 
was issued to parents who had not consented to their child’s 
participation in the clinical tests. The limited data from this 
questionnaire have been included.

In 2002 we initially enrolled 627 children (292 (46.6%) 
boys), representing 51.3% of the eligible sample of 1222. 
A further 183 participants subsequently provided a question-
naire, yielding an overall sample of 810 children (399 (49.3%) 
boys), represent 66% of the eligible sample. The response rate 
in 2002 was lower than in previous surveys (table). Between 
1992 and 2002 the prevalence of diagnosed asthma, recent 
wheeze, and use of asthma medication decreased signifi cantly 
(table). However, the prevalence of hay fever, eczema, atopy, 
airway hyperresponsiveness, or current asthma (defi ned 
as recent wheeze plus airway hyperresponsiveness) did not 
change signifi cantly. These trends contrast with the substan-
tial rise in the prevalence of most of these indicators during 
the period 1982 to 1992.1

Comment
These results provide evidence that the trajectory of increas-
ing prevalence of asthma has not continued. A potential 
limitation is the possibility of selection bias arising from a 
lower response rate in 2002 compared with 1992. In the 2002 
survey the prevalence of asthma symptoms was higher in 
the initial responders than in the responders in the second 
phase (data not shown). It seems reasonable to assume that 
non-responders were more similar to the responders in the 
second phase than the initial responders,4 and some empirical 
evidence supports this.5 If this is the case then the prevalence 
estimates for 2002 are likely to be overestimates for the popu-
lation. This direction of potential bias tends to strengthen our 
conclusion that the prevalence of asthma has not increased 
further during the period 1992 to 2002.

Although it is good news that the trajectory of increasing 
asthma prevalence has halted in the locality we studied, it 
remains to be seen how generalisable and sustained this new 
trend is. Uncertainty remains about the extent to which fl uc-
tuations in asthma prevalence over the past two decades can 
be attributed to changes in awareness of asthma. The explana-
tion for the reduction in prevalence remains as elusive as the 
explanation for the initial increase.

Contributors: BGT collected data, conducted data  analysis, and 
wrote the manuscript. KN coordinated the study, collected data and 
reviewed the manuscript. EB collected data, designed the database, 
checked accuracy of the data, and reviewed the manuscript. CMS 
participated in all three surveys, collected data, and reviewed the 
manuscript. GBM collected data, interpreted the data, and co-wrote 
the manuscript. JKP assisted with interpretation of the data and 
reviewed the manuscript.
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Changes in prevalence of atopy and asthma in primary school children, Belmont, New South Wales, Australia, 1982 to 2002. 
Values are numbers (percentages) unless otherwise indicated

1982* 
(n = 816)

1992† 
(n = 1052)

2002† 
(n = 1222)

1992 to 2002 Absolute % 
increase (95% CI‡)

Participants (response rate) 718 (88.0) 914 (86.9) 810 (66.3)
Asthma diagnosed 65/718 (9.1) 348/909 (38.3) 249/804 (31.0) –7.3% (–11.8% to –2.8%)
Recent use of asthma medicine 69/718 (9.6) 256/910 (28.1) 185/798 (23.2) –4.9% (–9.0% to –0.8%)
Recent use of inhaled steroids NA 112/910 (12.3) 59/591 (10.0) –2.3% (–5.5% to 0.9%)
Wheeze in the past 12 months§ 75/718 (10.4) 259/907 (28.6) 189/795 (23.7) –4.9% (–9.1% to –0.7%)
No. of attacks of wheeze in the past 12 months:
 <4 57/718 (7.9) 106/905 (11.7) 80/783 (10.2) –1.5% (–4.5% to 1.5%)
 4 18/718 (2.5) 144/905 (15.9) 92/783 (11.8) –4.1% (–7.4% to –0.8%)
Hay fever 147/718 (20.5) 310/908 (34.1) 309/804 (38.4) 4.3% (–0.3% to 8.9%)
Eczema 146/718 (20.3) 222/908 (24.4) 198/800 (24.8) 0.4% (–3.7% to 4.5%)
Parental asthma ever 129/718 (18.0) 248/891 (27.8) 218/571 (38.2) 10.4% (5.5% to 15.4%)
Skin prick test positive¶ 356/906 (39.3) 216/597 (36.2) –3.1% (–8.1% to 1.9%)
Airway hyperresponsiveness**
 All participants 65/718 (9.1) 180/891 (20.2) 108/550 (19.6) –0.6% (–4.8%to 3.6%)
 In non-atopic participants 40/540 (7.4) 35/353 (9.9) 2.5% (–1.3% to 6.3%)
 In atopic participants 139/347 (40.1) 71/192 (37.0) –3.1% (–11.7% to 5.7%)
Current asthma†† 32/718 (4.5) 110/889 (12.4) 62/549 (11.3) –1.1% (–4.5% to 2.3%)

NA = Not available.

* Data from3 and relating to children aged 8–10 years only.
† Data for children aged 8–11 years in the 1992 and the current (2002) study.
‡ Ranges that exclude zero are signifi cant at the 5% level.
§ Includes a positive response to either wheeze or exercise wheeze in the past 12 months.
¶ Any allergen skin prick test mean wheal diameter 3 mm. 1982 data not presented because of methodological differences with 
1992 and 2002 data.
** Provoking dose of histamine to cause a 20% fall in forced expiratory volume at 1 second <3.91 mol.
†† Recent wheeze and airway hyperresponsiveness.
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In England, the low prevalence of HIV among injecting drug 
users during the 1990s was attributed in part to the intro-
duction of harm reduction interventions in the late 1980s. 
Also, the prevalence of hepatitis C virus in the late 1990s was 
thought to be relatively low compared with other countries, 
at around 40% overall and 15% among those who had been 
injecting drugs for less than six years.1 We carried out a pro-
spective cohort study of new injecting drug users in London 
to estimate the incidence of hepatitis C virus and HIV.

Participants, methods, and results
In 2001, we recruited from community settings mainly 
in London, but also in Brighton, 428 injecting drug users 
who were aged below 30 years or had been injecting for six 
years or fewer. All had injected in the previous four weeks 
and could provide addresses for follow up. They completed 
interviewer administered questionnaires and provided oral 
fl uid specimens and optionally dried capillary blood spots 
for testing for antibodies to hepatitis C virus and HIV using 
published methods.2,3 They were followed up 12 months 
later. We calculated incidence using standard person time 
methods.

Most of the participants (91%) were recruited in London. 
The mean (SD) age was 27.4 (5.3) years, and 29% of the 
participants were women. Three fi fths (61%) of the sample 

at baseline had been injecting for less than four years, and 
the median frequency of injecting was 2.5 times a day. Most 
(71%) mainly injected opiates, although just over half (53%) 
had injected cocaine or crack in the previous year. Participants 
reported high levels of injecting risk behaviour, with 24% 
at baseline reporting injecting in the previous four weeks 
with needles and syringes used by someone else, and 53% 
sharing injecting paraphernalia. The baseline prevalence of 
antibody to hepatitis C virus was 44% and of antibody to HIV 
was 4% (table).

The overall follow up rate was 70%, and we found no 
difference between those followed up and those lost to 
follow up for sociodemographic characteristics or injecting 
risk behaviour. The incidence of antibody to hepatitis C virus 
was 41.8 cases per 100 person years and of antibody to HIV 
was 3.4 cases per 100 person years (see table).

Comment
The incidence of hepatitis C virus in England is high and of 
HIV higher than expected. These fi ndings are corroborated 
by ongoing surveillance data, and suggest that transmission 
may have recently increased.1 Injecting drug users in London 
have a higher incidence of hepatitis C virus than those 
in many cities worldwide, and an incidence of HIV compa-
rable to that among men who have sex with men attending 
clinics for sexually transmitted infection in London.4

Possible explanations for the rising incidence include 
changes in patterns of injecting drug use, with greater injec-
tion of crack and injecting risk behaviour in newer injecting 
drug users than in those injecting in the early to mid-1990s. 
In addition there may have been increases in the size of the 
population of injecting drug users over and above any increase 
in protective interventions. Recent estimates suggest that 
current syringe distribution in London provides one new 
needle per injecting drug user every two days and that fewer 
than one in four are in drug treatment at any one time.5 

Specifi c targets to prevent bloodborne viruses among injecting 
drug users have been absent from the UK government’s drug 
strategy in the past fi ve years, and there has been little targeted 
health education or prevention campaigns. Increasing the 
coverage of syringe exchange and provision of drug treatment 
is only part of the solution. Innovative strategies are required, 
specifi c to hepatitis C virus and to HIV, to change behaviour 
and to deliver health education messages and harm reduction 
strategies early enough to make a difference.
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Prevalence and incidence of hepatitis C virus and HIV antibody among new injecting drug users in London, 2001–3

Baseline Follow up

Viral antibodies No positive/total Prevalence (95% CI)
No. of seroconversions/total 

(mean follow up time)
Incidence rate per 
100 person years 

Hepatitis C virus 187/428 43.7 (38.9 to 48.5) 53/151 (372 days) 41.8 (31.9 to 54.7)
HIV 18/428 4.2 (2.5 to 6.6) 9/273 (360 days) 3.4 (1.8 to 6.6)

What is already known on this topic
Injecting drug users are at high risk of acquiring HIV, 
hepatitis C virus, and other bloodborne infections

What this study adds
The incidences of hepatitis C virus and HIV among new 
injecting drug users in London are 41.8 and 3.4 cases per 100 
person years, respectively

Current drug policy is failing to maintain historical levels 
of protection from bloodborne viruses among this high risk 
group
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Background

We often want to test whether the frequency of a condition 
is signifi cantly different between two or more groups, such 
as groups who receive different treatments or who have been 
exposed to different environmental factors. For example, we 
may want to test whether symptoms are less frequent in a 
group that has received a new treatment compared to a group 
that has received standard treatment. Alternatively, we may 
want to test whether children who are breast-fed have fewer 
respiratory infections than children who are formula-fed. 
For these types of research questions, in which both the out-
come and exposure variables can be classifi ed into categories 
such as the presence or absence of symptoms, a chi-square 
statistic is used to test whether there is good evidence that 
the exposure and outcome variables are related. The P value 
obtained from a chi-square test indicates the probability that 
a difference in the outcome rate between exposure groups 
has occurred by chance.

UNIT 3

Comparing proportions

31

Aims

To understand how to determine whether the frequency of 
an outcome is signifi cantly different between treatments or 
exposure groups, and how to estimate whether there has 
been a signifi cant increase or decrease in the frequency of a 
condition over time or over incremental exposure groups.

Cross-tabulations
In Unit 2, we discussed the methods that can be used to 
describe the rate of an illness in a population sample as 
either an incidence or prevalence rate. In this Unit, we use 
the term ‘frequency’ to describe the number of cases with 
the outcome of interest that occur in a given exposure 
category. When exploring a relationship between two cate-
gorical variables, the data should fi rst be summarised using a 
contingency table or cross-tabulation as shown in Table 3.1. 
The contingency table shown is called a 2 × 2 table because 
there are two categories for each of the disease (column) and 
exposure (row) variables. However, contingency tables can 
be larger when either the outcome or the exposure has more 
than two categories, for example, a 2 × 3 or a 3 × 3 table.

In clinical and epidemiological research, the exposure is 
conventionally displayed as the rows and the outcome as the 
columns. For example, in Table 3.1, the exposure, for exam-
ple the receipt of a new treatment (present, absent) forms 
the rows and the outcome, that is the disease or symptoms 
(present, absent) forms the columns. In this way, the people 
with the outcome of interest are displayed in the left-hand 
column and the people in whom the outcome is absent are in 
the right-hand column. Similarly, people who are exposed to 
the factor of interest are displayed in the fi rst row of the table 
and people who are not exposed in the second row.

Presenting the exposure and outcome variables as shown 
in Table 3.1 is the conventional format used in most clini-
cal epidemiology text books, and is standard for tables from 
which other statistics, such as measures of agreement or 
diagnostic statistics, are computed. However, the rows and 
columns in the table will be reversed on computer out-
put when a statistics program is used if the outcome and 

Learning objectives
On completion of this unit, participants will be able to:

decide whether appropriate percentages and chi-   •

square statistics have been used to describe the results;
choose the correct chi-square value to describe    •

the relationship between categorical outcome and 
explanatory variables;
distinguish between clinically important and    •

statistically signifi cant effects;
interpret tests for measuring trends in an outcome    •

over time or over incremental exposures.

Table 3.1 Contingency table for estimating chi-square values

Disease present Disease absent Total

Exposure present a b a  b
Exposure absent c d c  d
Total a  c b  d Total
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exposure variables are conventionally coded by assigning ‘no’ 
a number that is numerically lower than ‘yes’, for example no 
= 0 and yes = 1, or no = 1 and yes = 2. Obviously, the order 
of coding has no effect on the association between the vari-
ables, the percentages in the table or on the chi-square test. 
However, coding in this way does ensure that the direction of 
other measures of association, such as odds ratios or relative 
risks as described in Unit 4, are correctly calculated so that 
their interpretation is intuitive.

The data from a study to examine the effect of  exposure 
to environmental tobacco smoke on the prevalence of 
respiratory infection in early life in 1200 children are shown 
in Table 3.2. Exposure was defi ned as having a parent who 
smoked and the disease was defi ned as having been treated 
for bronchitis by a doctor or at a hospital during the fi rst 
two years of life. Table 3.2 shows that 300/1200 or 25.0% of 
children were exposed to parental smoking and 135/1200 
or 11.3% had been treated for bronchitis. In tables such as 
this, the percentages across the rows help to interpret the 
association between the two variables because they provide 
an estimate of effect. The row percentages show that 15.0% 
of children who were exposed to parental smoking had 
treatment for bronchitis compared to 10.0% of children who 
were not exposed. A chi-square test is used to assess whether 
this 5% difference in the rate of bronchitis between the two 
groups is statistically signifi cant or has arisen by chance. 
The P value indicates the strength of association between 
the exposure variable (parental smoking) and the outcome 
variable (treatment for bronchitis).

For the data presented in Table 3.2, the Pearson’s 
chi-square value is 5.63 and P = 0.018, indicating that 
children who have a parent who smokes have a signifi cantly 
higher rate of being treated for bronchitis than children who 
are not exposed to parental smoking.

Chi-square tests
The internal cells of a contingency table show the number of 
people in each of the disease/exposure groups. When using 
a chi-square test, each person must be included in the table 
once only. Sometimes a person may be represented in a data 
set more than once, for example if they have been studied on 
two or more occasions for a reason such as being re-admitted 
to hospital or having measurements taken from both legs. 
If a person has two or more records in the data fi le, then 
only one record can be used in a chi-square analysis and a 
decision needs to be made about which record to use, for 
example data collected on either the fi rst or the second occa-
sion. Inclusion of a person more than once in a chi-square 
analysis would violate one of the assumptions of the test, 
which is that all observations are independent.

Chi-square tests are easily calculated using a statistics 
package or a program available on the Internet, for example 
Simple Interactive Statistical Analysis (SISA) at http://home.
clara.net/sisa. Most statistical packages print out a range 
of different chi-square values for 2 × 2 tables. As shown in 
Table 3.3, the correct statistic to use depends on both 
the sample size and the expected count in each cell of the 
contingency table. The expected counts are the numbers that 
would be expected in each cell if the null hypothesis of no 
association between the two variables was true.1

Although a chi-square value is easily obtained by using 
a statistics package, an understanding of how the statistic 
is computed helps in its interpretation. The calculation of 
Pearson’s chi-square value is relatively simple. Firstly, the 
‘expected’ count for each cell in the contingency table is 
calculated by multiplying the row total by the column total 
for the cell and dividing this number by the sample size. For 
Table 3.1, the expected count in cell ‘a’ would be (a + b) × 
(a + c)/Total. Each cell count is simply the number predicted 

Table 3.2 Association between exposure to tobacco smoke 
and bronchitis in early life

Bronchitis No bronchitis Total

Parental smoker 45 (15.0%) 255 (85.0%) 300 (100.0%)

Parental 
non-smoker

90 (10.0%) 810 (90.0%) 900 (100.0%)

Total 135 (11.3%) 1065 (88.8%) 1200 (100.0%)

Table 3.3 When to use each chi-square value

Statistic Description Application

Pearson’s chi-square Approximation for large 
sample sizes

Used when the sample size is very large, say over 1000. At least 
80% of the cells should have an expected count greater than 5.

Continuity correction Adjusted for small sample sizes Used when the sample size is smaller, say less than 1000. This 
statistic is only available for 2 × 2 tables. 

Fisher’s exact test Used when the count in one or 
more cells is low

Used when one or more cells in a 2 × 2 table have a small 
expected count that is less than 5. 

Chi-square trend (also 
called Linear-by-linear)

Trend test Used to test for a trend in the frequency of the outcome across 
an ordered exposure variable.
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by the probability of exposure and the probability of disease 
in the sample.

The Pearson’s chi-square value is calculated by summing 
the deviations between the observed and expected counts in 
each cell as follows:

Pearson chi-square   Sum (Observed count 
 Expected count)2/Expected count

Expected count
As for many statistics, the deviations between the observed 
and expected values are squared to remove the infl uence 
of negative values that would balance out the positive 
values if the deviations were summed without being squared. 
Obviously, if the expected counts are close to the observed 
counts, the chi-square will be close to zero and will be 
non-signifi cant. The larger the difference between the 
observed and expected counts, the more likely the chi-square 
value will become statistically signifi cant, indicating a very 
low probability that the association has occurred by chance 
and that there is good evidence that the exposure and the 
disease are related.

Pearson’s chi-square is an approximate statistic based on 
the assumption of a very large sample size. However, other 
chi-square values that are adjusted for smaller sample sizes 
are available. If the expected number in any cell of the 
contingency table is less than 5, a Fisher’s exact test should be 
used rather than a Pearson’s chi-square test.

the P value, and is calculated as the sample size minus the 
number of parameters used in calculating the statistic. For 
chi-square, the degrees of freedom are the number of rows 
minus 1, multiplied by the number of columns minus 1. The 
smaller the number of degrees of freedom, the more signifi -
cant the P value will be for the same chi-square value. A chi-
square trend test is a more powerful statistic than Pearson’s 
chi-square statistic for a table that is 3 × 2 or larger because 
it is based on only one degree of freedom, rather than the 
number of exposure categories minus 1. Also, if most of the 
variation between groups is due to the trend, then the trend 
test will give a much smaller and therefore more signifi cant P 
value than Pearson’s chi-square.2

When using a chi-square trend test, the exposure needs 
to be presented in at least three ordered categories. 
For example, the exposure could be time (say years presented 
as 1974, 1984 and 1994) or a dietary factor such as vitamin 
C intake (coded as low, medium or high). The chi-square 
trend test then indicates whether the slope of the line 
through the frequency estimate in each exposure category 
is signifi cantly different from zero, that is, whether it is 
signifi cantly different from a horizontal line, which would 
indicate no trend. Figure 3.1 shows four frequencies of a 
theoretical outcome estimated over time with the trend 
line displayed. The trend appears important because the 
line shows that the estimated frequency has risen from 
approximately 9% in 1975 to approximately 18% in 2005, that 
is, by approximately 3% every 10 years. A chi-square trend 
test will indicate whether the slope of this line is signifi cantly 
different from zero or has arisen by chance. For Figure 3.1, 
if the group studied in each year had a sample size of 500, 
the chi-square value for the trend would be 14.47 which, 
with 1 degree of freedom, would give a P value of <0.01 
indicating a signifi cant trend for the outcome to linearly 
increase over time.

Glossary

Term Defi nition

Chi-square 
test

A statistic used to test whether the rate of an 
outcome is signifi cantly different between 
two or more exposure groups. The test 
provides a probability that the outcome and 
the exposure are independent.

Chi-square 
test for trend

A statistic used to test whether there is a 
linear trend for an outcome to increase 
or decrease over the range of an ordered 
categorical exposure variable. 
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Figure 3.1 Frequency of an illness (or outcome) across ordered 
exposure categories.

Chi-square trend tests
To decide whether an outcome and an exposure are signifi -
cantly related in a dose–response manner, a chi-square trend 
test can be used to measure whether the rate of the outcome 
increases or decreases signifi cantly over time, or as the expo-
sure increases or decreases. A chi-square trend test is used in 
a situation in which the outcome is binary and the exposure 
is an ordered categorical variable.

A chi-square trend test differs from other chi-square tests 
in the calculation of ‘degrees of freedom’. The degrees of free-
dom for any test is the effective sample size used to determine 
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Reading and questions
Set article
Miranda-Filho DB, Ximenes RAA, Barone AA, Vaz VL, Vieira 
AG, Albuquerque VMG. Randomised controlled trial of 
tetanus treatment with antitetanus immunoglobulin by the 
intrathecal or intramuscular route. BMJ 2004;328:615–618. 
(See p. 37.)

In the article by Miranda-Filho et al. (2004) the  clinical 
progression of tetanus is measured in a randomised 
controlled trial. Patients in an intensive care unit were 
randomised to one of two treatment groups and received 
anti-tetanus immunoglobulin by either the intrathecal 
and intramuscular route (new treatment group) or the 
intramuscular route (control group). There were 58 patients 
in the treatment group and 62 in the control group and 
therefore the sample size is moderately large for a single 
centre study.

In the results section of the article, the fi rst statistical result 
that the authors report is that the patients in the treatment 
group showed better clinical progression as measured by 
grade of tetanus than patients in the control group with a 
chi-square trend P value of 0.0052.

After reading the article, answer the following questions.
Using the values presented in Table 3 in the article, roughly 1 
sketch the percentage of patients in the study and control 
group with grade III or IV tetanus over the 10-day period 
to create a fi gure similar to Figure 3.1. Has the chi-square 
trend value been used in a classical way?
The most important clinical outcomes, that is, 2 
complications and mortality, are reported in Table 5 in 
the article. What is the difference in per cent with 
complications, respiratory infection, respiratory failure 
and death between the new treatment (study) group and 
the control treatment group? How would you interpret the 
P values?

In Table 5 in the article, it can be seen that there is more 3 
than a 50% reduction in mortality between the new treat-
ment (study) group (mortality 7%) and the control group 
( mortality 16%) but the P value is 0.197. Why do you 
think the P value is so large?
Would you reach the same conclusions that the authors 4 
have reached about the effectiveness of the treatment in 
reducing complications?

Worked example

In the article by Miranda-Filho et al. (2004) the authors 
refer to Table 3 and state that up to 10 days after  admission 
most patients in the treatment group had grade I or II 
disease and most patients in the control group had grade III 
or IV disease. However, no statistics are presented to  indicate 
whether these rates of outcome in the two groups are 
signifi cantly different.

To calculate the P value for the difference in outcomes 
between treatment groups so that we can be certain of the 
statistical signifi cance, a 2 × 2 contingency table can be cre-
ated from Table 3 in the article using grade of tetanus at day 2 
and extrapolating the numbers as shown in Table 3.4. In this 
article, treatment group is the exposure and grade of tetanus 
is the outcome. For this exercise, we will calculate Pearson’s 
chi-square, although if using a statistics package a continuity 
chi-square would be the most appropriate statistic because 
the sample size is less than 1000.

In tables such as this, to estimate the effect size and aid in 
the interpretation of the P value, it is useful to compare the 
percentage of participants with the outcome of interest in 
each of the groups. In Table 3.4, it can be seen that 25% of the 
participants in the treatment (study) group have grade III–IV 
tetanus on day 2 compared to 49% of the control group – a 
24% difference in severe disease. The Pearson’s chi-square 
value for the table can be calculated from the formula shown 
in this Unit either using a calculator or an Excel spreadsheet, 
as shown in Table 3.5.

Note that the observed minus the expected counts 
(O − E) for each cell are of the same magnitude with equal 
signs for opposite quarters of Table 3.4. When calculating the 
chi-square value, this is a good cross-check that the calcula-
tions are correct. If any of the cells have an expected count 

TAKE HOME LIST

For Pearson’s and a continuity corrected chi-square, at • 
least 80% of the cells in the contingency table must have 
an expected count greater than 5.

The • P value from a chi-square test is infl uenced by 
the sample size. The smaller the sample size, the less 
signifi cant the P value will be for the same chi-square 
value.

A chi-square test for trend can be used when the exposure • 
has three or more ordered categories.

For the same chi-square value, a chi-square test for trend  • 
is more powerful than a Pearson’s chi-square test because 
it has fewer degrees of freedom, and therefore will have a   
lower P value.

Table 3.4 Grade of tetanus on day 2 by treatment group

Grade III or IV 
tetanus

Grade I or II 
tetanus

Total

Treatment (study) group 14 (25%) 42 (75%) 56
Control group 27 (49%) 28 (51%) 55
Total 41 70 111
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of less than 5, then a Fisher’s exact test would be more 
appropriate than a chi-square test.

The chi-square value, which is the sum of the (O − E)2/E 
terms, is 6.91. For a 2 × 2 table with 1 degree of freedom, 
consulting a chi-square table in a statistics book shows that 
a chi-square value of 3.84 indicates P = 0.05, a value of 6.63 
indicates P = 0.01 and a value of 10.83 indicates P < 0.001. 
Thus, the chi-square value of 6.91 indicates that the differ-
ence of 49%−25% (or 24%) in frequency of grade III or IV 
tetanus between treatment groups is signifi cant with a P 
value of less than 0.01. Thus, we can conclude that there is 
a very small probability that the difference between groups 
has arisen by chance and reject the null hypothesis that there 
is no difference between the groups. That is, there is good 
evidence of a relationship between treatment and severity of 
tetanus.

The chi-square value is, however, heavily dependent 
on the sample size. If the sample size had been only 25 
patients in each group, but with the same percentages in 
categories and difference in rates between the groups, the 
numbers shown in Table 3.6 would be obtained. The chi-
square value would equal 3.13 and the P value would be 
greater than 0.05 and therefore not signifi cant. As discussed 
in Unit 1, clinically important differences between groups 
may not be statistically signifi cant when the sample size 
is small, and clinically unimportant differences between 
groups are likely to be statistically signifi cant when the 
sample size is large. Thus, it is essential that P values are 
interpreted in the context of both the sample size and 
the clinical importance of the difference in frequencies of 
outcomes between the groups.

Exercise

Using the article by Miranda-Filho et al.(2004) con-
struct a 2 × 2 contingency table for the comparison of 
tetanus grade I–II vs tetanus grade III–IV at 6 days after 
onset of treatment and calculate the Pearson chi-square 
value.

Is the Pearson’s chi-square value statistically signifi cant  •

and value consistent with the difference in severity rates 
between treatment groups?
If the number of patients enrolled was 25 in each group  •

with approximately the same percentages and rates 
as day 6, would the difference in severity rates between 
groups on day 6 still be statistically signifi cant? Would 
this result lead you to change the conclusion drawn by 
the authors?

Quick quiz

Tick the correct answer for each of the following questions.

When the total sample size is 78 patients and all cells of 1 
the contingency table have an expected count greater than 
5, which statistical test should be used to examine the 
association between two categorical variables?

Pearson’s chi-square;(a) 
Continuity corrected chi-square;(b) 
Fisher’s exact chi-square;(c) 
Linear-by-linear chi-square.(d) 

Table 3.5 Calculation of Pearson’s chi-square using Excel

Observed (O) Row total Column total Total sample size Expected (E) O − E (O − E)2/E

14 56 41 111 20.7 −6.7 2.16

42 56 70 111 35.3   6.7 1.27

27 55 41 111 20.3   6.7 2.20

28 55 70 111 34.7 −6.7 1.29

Sum 6.91

Table 3.6 Calculation of Pearson’s chi-square when sample size is theoretically reduced to 25 per group

Observed (O) Row total Column total Total sample size Expected (E) O − E (O − E)2/E

6 25 18 50   9.0 −3.0 1.00

19 25 32 50 16.0   3.0 0.56

12 25 18 50   9.0   3.0 1.00

13 25 32 50 16.0 −3.0 0.56

Sum 3.13
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The expected counts indicate the number that would be 2 
expected in each cell if:

the data had come from a random population sample;(a) 
the sample characteristics were similar to the general (b) 

population;
the rate of exposure and illness in the population was (c) 

the same as in the sample;
the exposure has a clinically important effect on the (d) 

outcome.

It is appropriate to use a Pearson’s chi-square test when:3 
the number of observed counts in each cell is larger (a) 

than 5;
the data have been randomly selected from the (b) 

population;
the outcome variable has a continuous distribution;(c) 
both variables are categorical and each person (d) 

appears in the data set once only.

A chi-square test for trend indicates that:4 
the exposure rate increases with increasing outcome (a) 

rates;

a regression line can be drawn through the (b) 
estimates;

the prevalence of an illness increases over time;(c) 
an outcome rate changes signifi cantly with increasing (d) 

exposure.

Critical appraisal

Work through the critical appraisal checklist to review the 
article by Miranda-Filho et al. (2004) and decide whether the 
results warrant a change in clinical practice.
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Critical appraisal checklist for an article that compares prevalence rates between 
groups

Study designA. 

What is the design of the study?1. 

Were the sampling/recruitment techniques appropriate?2. 

What are the strengths of this study?3. 

Can we be confi dent that each patient is included only once in each 4. 
comparison?

Statistical methodsB. 

Are the correct terms used to describe frequencies?5. 

Are the correct statistics reported?6. 

ResultsC. 

Are the outcomes clinically important?7. 

How large was the effect of the treatment/exposure?8. 

Are 95% confi dence intervals used to make the size of the 9. 
differences between exposure groups clear?

InterpretationD. 

Which patient or population group do the results generalise to?10. 

How are the results relevant to clinical practice?11. 

Have the effects been interpreted correctly?12. 
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Introduction
Tetanus is a universal public health problem, with around 
one million cases a year and a mortality between 6% and 
60%.1 Over the past 30 years only nine randomised controlled 
trials have studied the prevention and treatment of tetanus.2 
Recent advances in treating tetanus are ascribed to the more 
frequent and effective use of aggressive treatments that utilise 
tracheotomy, artifi cial paralysis, and artifi cial respiration.2–4

Treating tetanus by neutralising the toxin is still contro-
versial, especially dosage and route of administration.5–15 

A meta-analysis of intrathecal therapy was inconclusive in 
adults.16 We evaluated the effect of such therapy on clinical 
progression of and mortality from tetanus.

Methods
Our study sample was patients with tetanus admitted to 
the intensive care unit of the Oswaldo Cruz University 
Hospital, Recife, Brazil. Potential participants were aged 12 
or more and had secondary sex characteristics. They were 
randomised to receive antitetanus immunoglobulin by either 

Abstract
Objective To evaluate the effect of intrathecal therapy with human antitetanus immunoglobulin on clinical progression 
of and mortality from tetanus.
Design Randomised controlled trial.
Setting Intensive care unit of a university hospital, Pernambuco, Brazil.
Participants 120 patients with tetanus allocated to antitetanus immunoglobulin by either the intrathecal and intramus-
cular route (n = 58) or the intramuscular route (n = 62; control group).
Main outcome measures Clinical progression of disease, duration of hospital stay, duration of occurrence of spasms, com-
plications, respiratory infection, respiratory failure or mechanical ventilation, duration of respiratory assistance, and mortality.
Results Patients in the treatment group showed a better clinical progression than those in the control group (2 for trend 
7.752, P = 0.005; difference in proportion of patients with improvement 20%, 95% confi dence interval 4% to 35%). The 
duration of occurrence of spasms, hospital stay, and respiratory assistance were all shorter in patients the treatment group: 
respectively, 14.96, 0.0001 (difference in proportion of patients with spasms lasting 10 days 36%, 18% to 55%); 4.56, 
0.03; and 6.56, 0.01 (proportion of patients who needed assistance for 10 days 69.2% in the treatment group and 30.8% 
in the control group (difference 38%, 12% to 65%)).
Conclusion Patients treated with antitetanus immunoglobulin by the intrathecal route show better clinical progression 
than those treated by the intramuscular route.

doi 10.1136/bmj.38027.560347.7C
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the intrathecal and intramuscular routes (treatment group) 
or the intramuscular route (control group).

Sample size calculations
Our sample size was based on two outcomes: disease 
progression and mortality.17 Clinical progression was based 
on the study by Gupta and coworkers, where 6% of patients 
worsened after treatment compared with 21% in the control 
group.7 Assuming an α of 5% and a β of 20% (80% power), 
we needed 112 patients, 56 in each group.

In the past 15 years, mortality from tetanus at our hospital 
has been up to 35%.18 Taking previous studies as reference, we 
estimated a reduction in mortality to 18%.5, 7, 8 Assuming an α 
of 5% and a β of 40% (60% power), we needed 132 patients, 
66 in each group.

Data collection
After obtaining written informed consent, we randomised 
participants to either the treatment group or the control group. 
Randomisation was based on blocks of 20, and treatment 
allocation was concealed in sealed envelopes. We classifi ed 
tetanus as grade 1, trismus, dysphagia, and generalised rigidity 
with no spasms; grade 2, mild and occasional spasms; grade 3, 
severe and recurrent spasms—usually triggered by minor or 
imperceptible stimuli; and grade 4, features of grade 3 and 
overactivity of the sympathetic nervous system.19 Meetings 
were held weekly to discuss and verify these criteria. The grade 
was recorded on admission.20, 21 Using a standardised form we 
collected data on clinical progression and outcome of each 
case, as well as re-evaluations as outpatients. The occurrence 
of spasms was recorded daily on another form.

Although blinding effectively minimises bias, placebo would 
be unethical in our study. We therefore used several approaches 
to minimise observation bias: the doctors who classifi ed the dis-
ease were rotated on alternate days for 10 days after patients were 
admitted; the clinical stage was recorded on a form devoid of 

information on treatment or previous classifi cations; treatment 
allocation was known only by certain members of the research 
team; and regular meetings were held to discuss problems.

For intrathecal therapy, we used 1000 IU of a lyophilised 
human immunoglobulin, free of preservatives to avoid 
irritating the meninges and the need for corticosteroids. The 
immunoglobulin was diluted in distilled water to a volume of 
4 ml, injected by lumbar, or preferably suboccipital, puncture 
after removal of the corresponding volume of cerebrospinal 
fl uid. Both groups received 3000 IU of immunoglobulin with 
preservative by the intramuscular route. All patients were 
treated according to the standardised protocol.

Data processing and analysis
We used EPI INFO 6.0 for analyses and we made double 
entries. The frequency of each outcome was compared 
by 2 test or relative risks with 95% confi dence intervals. 
For ordered categories we used the 2 test for linear trend. 
The t test was used for mean comparisons. Participants who 
failed to undergo the therapeutic procedure were analysed 
according to the group to which they were allocated.

Results
From July 1997 to July 2001 we recruited 120 patients; 58 were 
allocated to the treatment group and 62 to the control group 
(fi gure). Potential confounders were similarly distributed 
between the groups (table 1).

Three patients refused to participate. They were treated 
in accordance with normal routine and were eventually dis-
charged from hospital. In two patients it proved technically 
diffi cult to achieve suboccipital or lumbar puncture; they 
received treatment by the  intramuscular route only, but for 
analyses they were considered in the intrathecal group. We 
excluded one patient randomised to each group owing to mis-
classifi cation of diagnosis: one had herpes virus  meningitis 
and the other muscular rigidity due to metoclopramide.

The treatment group showed better clinical progression 
than the control group (2 for trend 7.82, P = 0.0052; table 2). 
Most of the participants were classifi ed with either grade I or 
II disease. Up to 10 days after admission most patients in the 
treatment group had grade I or II disease and most patients in 
the control group had grade III or IV disease (table 3).

We excluded 23 patients on the basis of spasms: 17 had 
none during hospital stay, fi ve died during the period that 
spasms occurred, and in one the record of daily spasms was 
mislaid. The study group had shorter duration of occurrence 
of spasms (2 for trend 14.96, P = 0.0001; table 4). Among the 
106 patients who survived, duration of hospital stay varied 
from 2 to 80 days. The treatment group had a shorter  duration 
of hospital stay (4.56, 0.03; table 4); a smaller proportion had 
complications during this time, although the difference was 
not signifi cant (P = 0.071; table 5).

Respiratory infection was the most common complication. 
It occurred less frequently in the treatment group, although 
the difference was not signifi cant (P = 0.073; table 5). 
The relative risk of patients developing respiratory failure that 

Eligible patients (n = 125)

Patients randomised (n = 122)

Refused to participate (n = 3)

Assigned to antitetanus
immunoglobulin

by intramuscular route (n = 63)

Assigned to antitetanus
immunoglobulin

by intrathecal route (n = 59)

Analysed (n = 62)

Excluded owing to rigidity
after metoclopramide (n = 1)

Analysed (n = 58)

Excluded owing to herpes
virus meningitis (n = 1)

Treatment by intramuscular
route only (n = 2)

Trial profi le
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Table 1 Baseline characteristics of patients treated for tetanus by the intramuscular route (control group) or 
intrathecal route

Characteristic No. (%) in control group (n = 62) No. (%) in study group (n = 58)

Male 52 (84) 53 (91)
Age (years):
 12–30 21 (34) 14 (24)
 31–50 18 (29) 24 (41)
 51–70 18 (29) 13 (22)
 >70 5 (8) 7 (12)
Incubation period (days)*:
 10 32 (52) 38 (66)
 >10 21 (34) 18 (31)
 Unknown 9 (15) 2 (3)
Period of onset (hours)*:
 48 30 (48) 30 (52)
 >48 24 (39) 18 (31)
 Unknown 1 (2) 2 (3)
 With no progression to spasms 7 (11) 8 (14)
Time between start of symptoms and admission (hours)*:
 36 15 (24) 18 (32)
 >36 47 (76) 39 (68)
Prognostic classifi cation†:
 1A 7 (11) 9 (12)
 2A 23 (37) 20 (35)
 3A 32 (52) 29 (50)
Clinical grade on admission:
 I 24 (39) 21 (36)
 II 23 (37) 23 (40)
 III 15 (24) 13 (22)
 IV — 1 (2)

* Cut-off points based on Miranda-Filho et al.21

† According to Armitage and Clifford.20 Prognostic classifi cation based on time elapsed between beginning of 
symptoms and admission and spasms at admission; improved prognostic from 1A to 3A.

Table 2 Clinical progression of patients treated for tetanus by the intramuscular route (control group) or intrathecal route

Clinical progression No. (%) in control group (n = 60) No. (%) in study (n = 58) P value*

Improvement 10 (17) 21 (36) 2 = 7.752; 0.005
Stabilisation and improvement 13 (22) 15 (26)
Deterioration† 37 (62) 22 (38)

* 2 for linear trend.
† Smaller risk of deterioration or death within fi rst 10 days in study group (relative risk 0.6, 95% confi dence interval 0.4 to 0.9).

required artifi cial respiration was smaller in the treatment 
group than in the control group, but the difference was not 
signifi cant (P = 0.094; table 5). However, the difference in the 
duration of respiratory assistance among 50 patients in both 
groups (six died during respiratory assistance) was signifi cant 
(2 for trend 6.56, P = 0.01; see table 4).

The relative risk of death was smaller among patients in the 
treatment group, although the difference was not signifi cant 

(P = 0.2). The wide confi dence interval (0.78 to 7.05) suggests 
that the sample size was too small to detect a difference of this 
magnitude (table 5).

In general, all results showed improvement among patients 
in the treatment group. Differences were not signifi cant for 
mortality and complications only.

Five patients had mild headache during the intrathecal pro-
cedure. In only one did this continue after the fl ow rate of the 

Peat_Unit 3_Miranda-Filho.indd   39Peat_Unit 3_Miranda-Filho.indd   39 6/13/2008   2:52:29 PM6/13/2008   2:52:29 PM



Originally published in BMJ 2004; 328: 615. Reproduced with permission.

40   UNIT 3  Comparing proportions

Table 3 Severity of tetanus within 10 days of admission. 
Values are numbers (percentages) of patients

Grade of tetanus

Days after 
admission I II III IV

Day 2:

 Control 15 (27) 13 (24) 19 (35) 8 (15)

 Study 20 (36) 22 (39) 13 (23) 1 (2)

Day 4:

 Control 10 (19) 13 (25) 20 (38) 10 (19)

 Study 19 (36) 23 (43) 9 (17) 2 (4)

Day 6:

 Control 11 (21) 12 (23) 17 (33) 12 (23)

 Study 18 (39) 21 (46) 7 (15) —

Day 8:

 Control 9 (18) 16 (31) 17 (33) 9 (18)

 Study 23 (52) 16 (36) 05 (11) —

Day 10:

 Control 9 (21) 11 (26) 17 (40) 6 (14)
 Study 22 (56) 10 (26) 5 (13) 2 (5)

82 patients were evaluated on day 10, 20 had been 
discharged, seven had died, and 11 missed appointments.

Table 4 Duration of occurrence of spasms and hospital stay and need for respiratory 
assistance in patients treated for tetanus by the intramuscular route (control group) or 
intrathecal route

Duration (days) of outcome Control group Study group P value*

Permanence of spasms: n = 51 n = 46
 10  14 (32)  30 (68) 14.96; 0.0001†
 11–20  18 (62)  11 (38)
 >20  19 (80)  5 (21)
Hospital stay: n = 52 n = 54
 15  14 (27)  23 (43) 4.56; 0.03‡
 16–30  17 (33)  19 (35)
 >30  21 (40)  12 (22)
Respiratory assistance: n = 30 n = 20
 10  4 (31)  9 (70) 6.56; 0.01§
 11–20  12 (63)  7 (37)
 >20  14 (78)  4 (22)

* 2 for linear trend.
† P = 0.001 (t test).
‡ P = 0.13 (t test).
§ P = 0.01 (t test).

drug was reduced and the procedure fi nished; the  headache 
stopped after 500 mg dipirona was given intravenously. We 
observed no meningeal irritation or meningitis among 
patients given intrathecal therapy. Among the 106 patients 

who were discharged, 64 returned to the outpatient clinic for 
a check up, in accordance with the study protocol. Of these, 37 
belonged to the treatment group; they had no side effects.

Fourteen patients died during the study. The cause of death 
was not determined in seven, four died from septicaemia or 
septic shock, one died in an anoxic coma after prolonged 
cardiorespiratory arrest, one died from respiratory infection, 
and one died from acute respiratory failure. Half of these 
patients died within 10 days of admission. The others died 
between days 16 and 89. No particular pattern was observed 
for deaths.

Discussion
Patients treated for tetanus with human antitetanus 
immunoglobulin by the intrathecal route show better clini-
cal progression than patients treated by the intramuscular 
route. They also showed fewer complications, particularly 
respiratory ones, and needed less intervention if they did and 
had a shorter duration of occurrence of spasms.

The use of mortality as an indicator of treatment response 
is common in evaluating therapeutic measures in tetanus. 
Indicators of morbidity and disease progression have been 
used in several studies.5–8, 11, 12, 14, 22 We monitored disease pro-
gression by grade of tetanus.19 Grade I and II predominated 
in the treatment group and grade III and IV predominated 
in the control group. Such differences were perceptible in 
the early stages of hospital stay and may be attributed to 
intrathecal therapy.

To our knowledge no studies have compared the duration 
of occurrence of spasms.5–8, 11–15, 22 Spasm is easily identifi ed 
and a relatively reliable indicator. The duration of occurrence 
of spasms was shorter among patients in the treatment group. 
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Duration of hospital stay was also shorter in the treatment 
group, which agrees with previous studies.8, 12, 22

What is already known on this topic
Neutralisation of tetanus toxin as part of tetanus therapy 
is still controversial, especially the dosage and route of 
administration

A meta-analysis of intrathecal therapy with antitetanus 
immunoglobulin was inconclusive in adults

What this study adds
Giving antitetanus immunoglobulin by the intrathecal route 
shows several clinical benefi ts

Patients treated by the intrathecal route had a better disease 
progression than those treated by the intramuscular route

Complications from tetanus, especially respiratory ones, 
are often followed by death.21, 23 Studies have shown benefi ts 
on respiratory complications from intrathecal therapy. In one 
study, treated patients needed artifi cial respiration less and 
for shorter duration than controls.14 In another, tracheotomy 
and mechanical ventilation were less likely to be needed by 
patients with mild tetanus.

Over half of the patients in our study had some type 
of complication, such as respiratory infection or  respiratory 
failure, most often in the control group. Although the 
differences were not statistically signifi cant, in both cases 
the probability was close to the cut-off point. Patients in the 
treatment group who did require artifi cial respiration needed 
less assistance than those in the control group. The difference 
was statistically signifi cant.

Fourteen of our 120 patients died; 10 had undergone con-
ventional treatment and four intrathecal therapy. Although 
the difference was not statistically signifi cant, the result is in 
the same direction as those for all other outcomes compared. 
It is possible that the sample was too small to study mortality, 
as suggested by the large confi dence interval.

To calculate our sample size we chose the outcome of 
reduction in mortality. During the early stage of data collec-
tion the intensive care unit was created and mortality from 

tetanus decreased from 35% to almost 12%. This may have 
had made it more diffi cult to show a statistically signifi cant 
difference between the groups.

An analysis of the causes of death, the circumstances in 
which it occurred, and the time from admission to death did 
not provide any important information with which to com-
pare the two groups. Seven of the 14 deaths occurred sud-
denly and the cause was not determined; similar proportions 
have been reported elsewhere.4, 23, 24
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Relative risk and odds ratio
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Aims

To understand the statistical methods used to estimate the 
magnitude of an association between two binary variables, 
and to calculate the likelihood that a person will have an 
outcome if exposed to a risk factor of interest, such as a new 
treatment or an environmental exposure.

different between the exposed and non-exposed groups. 
The difference between relative risk and odds ratios lies in 
the ways in which they are calculated and can therefore be 
interpreted. Although an odds ratio is frequently interpreted 
as have the same meaning as that of relative risk,1this is often 
not the case.

How to calculate relative risk and an odds ratio
To calculate whether an outcome and an exposure are 
related, the counts for each category are summarised in a 
2 × 2 contingency table as shown in Table 4.1. This table 
is the same as the contingency table shown in Unit 3 for 
calculating chi-square values.

Risk refers to the probability of an event or outcome 
occurring, such as the risk of infection, death or cure. For 
example, vaccination of newborn babies has reduced the 
risk of infections such as hepatitis B. Risk is calculated 
as the number of people with the outcome divided by the 
total number of people. Relative risk is calculated as the 
ratio of the prevalence (probability) of the outcome in 
the exposed group compared to the prevalence (probability) 
of the outcome in the non-exposed group as follows:

Relative risk (RR) =
/( + )

/( + )

a a b

c c d

The advantage of relative risk is that it has an intuitive 
interpretation. A relative risk of 2 indicates that the 
prevalence of the outcome (present) in the exposed group 

Learning objectives
On completion of this unit, participants will be able to:

defi ne the terms relative risk and odds ratio;   •

identify when a relative risk or odds ratio should be    •

used;
calculate a relative risk and an odds ratio from a    •

2 × 2 table;
explain why an odds ratio is often called a ‘poor man’s    •

relative risk’;
convert estimates of risk into estimates of protection,    •

and vice versa;
understand how to interpret confi dence intervals    •

around a relative risk or odds ratio.

Background

In health research and in clinical practice, we are often 
interested in identifying whether a health outcome, such 
as the presence of a disease, is related to exposure to a 
potential risk factor. The statistics of relative risk and odds 
ratio are valuable methods for estimating the strength 
of such a relationship when the two variables are binary, 
such as disease (present/absent) and potential risk factor 
(present/absent). These statistics describe the probability 
or odds that people who are exposed to a factor will have 
the outcome of interest compared to people who are not 
exposed. The exposure could be any factor, such as an envi-
ronmental agent or a newly developed treatment. Whereas 
chi-square tests measure the probability that the outcome 
and exposure are related (see Unit 3), relative risk and odds 
ratios describe the risk or likelihood that the outcome is 

Table 4.1 Contingency table to measure the relationship 
between an outcome and an exposure to a risk factor

Outcome present 
(cases)

Outcome absent 
(controls)

Total

Exposure present a b a + b
Exposure absent c d c + d

Total a + c b + d N
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is twice as high as the prevalence of the outcome 
(present) in the unexposed group. That is, people in the 
exposed group are two times more likely than people in 
the non-exposed group to have the disease, indicating 
that the exposure confers a risk for disease. A relative risk 
of 0.5 would indicate that the prevalence of the outcome 
(present) in the exposed group is half that of the preva-
lence of the outcome (present) in the unexposed group, 
that is, the exposure confers protection against disease. 
Obviously, a relative risk of 1 indicates equal risk in the two 
exposure groups and that the outcome is not related to 
the exposure.

The ‘odds’are the probability of an event occurring divided 
by the probability of that event not occurring. The probabil-
ity of the event not occurring is 1 minus the probability of 
the event occurring. An odds ratio is then the odds of an 
event occurring in one group divided by the odds of an event 
occurring in another group. An odds ratio can be calculated 
from Table 4.1 as follows:

Odds ratio (OR) =
( / )

( / )

a b

c d

The odds ratio is a way of representing probability that 
is especially familiar to betting, but perhaps not to most 
people in health care research.2 An odds ratio is not only 
less intuitive to interpret than relative risk, but the inter-
pretation is dictated by the study design. In most studies, 
the odds ratio describes the odds of the outcome  occurring 
in the exposed group compared to the odds of the out-
come occurring in the non-exposed group. For  example, 
an odds ratio of 2 indicates that the odds of the disease 
occurring in the exposed group are twice that of the odds 
of the disease occurring in the non-exposed group. An 
odds ratio equal to 1 indicates that the odds of the outcome 
are equally likely in both the exposed and non-exposed 
groups. That is, there is no relationship between the 
exposure and the outcome.

The interpretation of odds ratios from case-control 
studies is slightly different. In case-control studies, the odds 
ratio describes the odds that the cases have been exposed 
compared to the odds that the controls have received the 
same exposure. Thus, an odds ratio of 2 would indicate 
that the odds of exposure in the cases was twice as high as 
the odds of exposure in the controls. Case-control studies 
are often conducted because the outcome of interest is rare. 
For rare outcomes, a cross-sectional or cohort study would 
have to be very large to enrol suffi cient cases to measure risk 
accurately. The probability needed to compute relative 
risk can only be estimated accurately from a representative 
population sample, and thus the odds ratio offers a method 
of estimating an approximate relative risk in case-control 
studies in which a convenience method of selecting the 
sample is used.3

When to use a relative risk or odds ratio
Clearly, the advantage of using relative risk is that it has 
a more direct and intuitive interpretation than an odds 
ratio. In practice, the decision of which statistic is most 
appropriate to use largely depends on the study design and 
whether an adjustment for the effects of other risk factors 
needs to be made.

Relative risk indicates the increased risk of a person having 
a disease if they are exposed to a factor of interest. Because 
this statistic relies on the probability of the outcome in 
the sample being the same as the probability of the outcome 
in the population, relative risk can only be used when the 
sample has been selected randomly or when a representa-
tive sample has been enrolled. Random samples are often 
enrolled in cross-sectional studies and in some cohort 
studies and clinical trials. In non-random samples, such as 
in case-control studies in which the proportion of  people 
with disease depends on the sampling process, the prob-
ability of disease will be altered by the selection criteria and 
therefore the relative risk will not represent the population 
risk. Thus, relative risk should only be calculated from a 
sample that has the same characteristics as the population 
from which it is drawn, and in which the proportion of 
people with the outcome represents the population 
prevalence rate of the disease.

The odds ratio indicates the odds of a person having a 
disease if they are exposed to a factor of interest compared 
to the odds if not exposed. This statistic has the advantage 
that it can be calculated regardless of the sampling method 
or whether the rate of disease in the sample is similar to the 
rate in the population. Thus, odds ratios can be calculated 
from data collected in case-control studies in which the 
proportion of people with the disease is usually very dif-
ferent from the prevalence of the disease in the population. 

Glossary

Term Defi nition

Risk The probability of an event or outcome 
occurring, such as the risk of infection, death 
or cure.

Relative risk Ratio of the probability of the outcome 
occurring in the exposed group, divided by 
the probability of the outcome occurring in 
the non-exposed group. 

Odds The probability of an event (p) occurring, 
divided by the probability of that event not 
occurring (1 − p).

Odds ratio Ratio of the odds of the outcome occurring 
in one group, divided by the odds of the 
outcome occurring in another group.
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For this reason, odds ratios allow direct comparisons of 
effect between different study designs, and odds ratios 
from studies such as cohort and case-control studies can be 
compared and combined. This can be important, for example, 
when comparing results from different clinical trials or when 
meta-analysis is used to summarise the results from several 
studies. Although relative risks can be compared and com-
bined in the same way, they must always be generated from 
studies in which a random population sample is enrolled, so 
that the frequency of the outcome in the sample is approxi-
mately the same as the prevalence in the population.

When an odds ratio is calculated directly from a 2 × 2 
table, it is called an ‘unadjusted’ odds ratio. However, odds 
ratios can be adjusted for the effects of other related expo-
sures by using logistic regression, in which case the summary 
estimates are called ‘adjusted’ odds ratios. This is important 
because exposures are often related. For example, exposures 
that are associated with personal choice, such as smoking 
and exercise, are often related in that the prevalence of smok-
ing in people who exercise infrequently is often higher than 
in people who exercise regularly.4 Exposures that are related 
to one another and that are also related to the outcome 
are called confounders. Confounding often occurs because 
people self-select themselves into related exposure groups. 
Logistic regression is a multivariate modelling technique 
that is used to separate out the independent effects of related 
exposures.

In general, odds ratios should not be used to estimate the 
relative risk. When the relative risk is more than 1, indicating 
a risk from exposure, an odds ratio will overestimate the rela-
tive risk.5 Conversely, when the relative risk is less than 1, indi-
cating benefi t or protection from exposure, the odds ratio will 
overestimate the protective value of the exposure when com-
pared to a relative risk calculated from the same sample.5 The 
difference between the odds ratio and the relative risk value 
becomes larger when either the exposure or the disease is 
relatively common in the sample. Only when the outcome of 
interest in the study population is infrequent, that is less than 
10%, does the odds ratio approximate to the relative risk. 5 
Because the odds ratio does not always approximate to the 
relative risk, it can be a misleading statistic if generalised to 
a population setting.6 However, a counter view is that odds 
ratios are only misleading when they are applied as though 
they were a relative risk.7

Confi dence intervals
The calculations of confi dence intervals for both relative 
risk and odds ratios are more complicated than for percent-
ages and mean values in that they are based on logarithms2 
and are therefore best obtained using a dedicated statistics 
program. But, as for other summary statistics, the confi dence 
intervals show the range in which we are 95% certain that 
the true relative risk or odds ratio in the population lies. 
The confi dence intervals around estimates of relative risk 

and odds ratios are only symmetrical around the summary 
statistic when the results are expressed in logarithmic units, 
and they are asymmetrical when the results are converted 
back into linear units.

Confi dence intervals are an important aid in interpreting 
the clinical importance and statistical signifi cance of relative 
risks and odds ratios. For both statistics, a value of 1 indi-
cates no risk or no association. Therefore, a relative risk that 
is greater than 1 with a 95% confi dence interval that does not 
cross the line of unity indicates a signifi cant positive associa-
tion between exposure and outcome of interest, with the out-
come more likely in the exposed group. Conversely, if the rel-
ative risk is less than 1 and the 95% confi dence interval does 
not cross the line of unity, this indicates a signifi cant negative 
association between exposure and outcome of interest, with 
the outcome more likely in the non-exposed group.

Figure 4.1 shows fi ve relative risks with their 95% confi -
dence intervals. If the confi dence interval crosses the line of 
no risk (unity), we can be fairly certain that the estimate is 
not signifi cant at the P < 0.05 level no matter how large the 
relative risk. On the other hand, a relative risk with a 95% 
confi dence interval that does not cross the line of unity will 
be statistically signifi cant at the P < 0.05 level even though 
the relative risk may be small. Although relative risks are 
shown in Figure 4.1, the same principles apply to interpret-
ing odds ratios and their 95% confi dence intervals.

Clearly, relative risks and odds ratios need to be 
interpreted in terms of the size of the estimate, the clinical 
importance of the effect size, and the precision indicated 
by the width of the confi dence intervals. When estimating 
the clinical importance, the severity of the outcome and the 
rate of exposure in the community must also be considered. 
If an exposure is rare, then a small relative risk or odds ratio 
will only be clinically important if the outcome has severe 
health consequences because few people will be affected. 
However, a small relative risk or odds ratio will be clinically 
important if the outcome is not severe but if many people 
are exposed. For example, the odds ratio for Australasian 

Figure 4.1 Relative risk and interpretation of 95% confi dence 
intervals.

Relative risk

Non-significant

Non-significant

Significant risk

Significant risk

Highly significant risk

1 10
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children to have symptoms of asthma (wheeze) if exposed to 
a mother who smokes is very small at 1.3.8 However, approxi-
mately 25% of mothers smoke so that, across the population, 
many thousands of children will have symptoms of asthma 
as a result of exposure. Although symptoms of wheeze rarely 
require tertiary treatment, the burden on children and on 
the primary health care system as a result of exposure will be 
clinically important.

Worked example

Reducing local reactions for infants who undergo routine 
vaccinations is important for both medical practitioners and 
parents. The set article by Diggle and Deeks (2000) compares 
rates of reactions in infants immunised with two different 
sizes of needles. The 2 × 2 table for redness at 6 hours can 
be reconstructed from the article as shown in Table 4.2 with 
redness as the outcome of interest and exposure present 
being the long, thin needle.

The relative risk and odds ratio can then be calculated as 
follows:

Relative risk (RR) =
(21/53)

(34/57)
=

0.40

0.60
= 0.66

Odds ratio (OR) ==
(21/32)

(34/23)
=

0.66

1.48
= 0.44

The probability of having redness is 21/53, or approxi-
mately 40%, in the children with whom a long, thin needle 
is used and is 34/57, or approximately 60%, in children 
with whom a short, wide needle is used. Both the relative 
risk and the odds ratio are less than 1 indicating a pro-
tective effect, that is, indicating that long, thin needles are 
associated with less redness at 6 hours than short, wide 
needles. The results published in the article show that at 
6 hours the relative risk of 0.66 has a 95% confi dence inter-
val of 0.45–0.99. This confi dence interval does not cross 
the line of unity (no effect) and is therefore consistent with 
a signifi cant P value of 0.007.

Obviously if exposure to a factor is protective then 
absence of exposure to the factor confers a risk, and there-
fore the calculations above also indicate that short, wide 
needles increase the risk of redness occurring. Estimates of 
protection can be converted into risk simply by reciprocat-
ing them. Figure 4.2 shows an estimate of risk plotted on a 
logarithmic scale, and the same estimate when converted 
into a protective factor by reciprocation. The two estimates 

TAKE HOME LIST

Both relative risks and odds ratios should be interpreted in • 
terms of both their magnitude and their 95% confi dence 
intervals.

A relative risk larger than 1 with a 95% confi dence interval • 
that does not cross the line of unity indicates that the 
prevalence of the outcome is signifi cantly higher in the 
exposed group.

A relative risk or odds ratio with a 95% confi dence interval • 
that crosses the line of unity indicates that there is no 
association between the outcome and exposure.

In a case-control study, an odds ratio larger than 1 • 
with a 95% confi dence interval that does not cross the 
line of unity indicates that the odds of the exposure is 
signifi cantly greater in the cases than in the controls.

In general, odds ratios should not be used to estimate • 
relative risk. When the frequency of the outcome of 
interest is less than 10%, the odds ratio will be close to 
the relative risk.

Further reading and questions
Reprints
Altman DG, Deeks JJ, Sackett DL. Odds ratios should be avoided 
when events are common. BMJ 1998; 317:1318. (See p. 49.)
Davies HTO, Crombie IK, Tavakoli M. When can odds ratios 
mislead? BMJ 1998; 316:989–991. (See p. 50.)

After reading the reprints, answer the following questions.
Why have odds ratios become popular statistics to describe 1 
the strength of a relationship?
What is the difference between an odds ratio and a 2 
relative risk?
What is the interpretation of a relative risk that is less 3 
than 1?
Why is the relative risk not in the centre of its confi dence 4 
interval on a linear scale?
In what situation is the odds ratio a poor estimate of the 5 
relative risk?

Set article
Diggle L, Deeks J. Effect of needle length on incidence of local 
reactions to routine immunisation in infants age 4 months: ran-
domised controlled trial. BMJ 2000; 321:931–933. (See p. 53.)

Table 4.2 Association between redness and needle size in 
infants

Redness 
present

Redness 
absent

Total

Long, thin 
(23 G, 25 mm) needle

21 32 53

Short, wide 
(25 G, 16 mm) needle

34 23 57

Total 55 55 110
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the results warrant a change in the immunisation guidelines 
used by doctors and nurses.

Quick quiz

Tick the correct answer for each of the following questions.

An odds ratio that indicates risk and an odds ratio of the 1 
same magnitude that indicates protection:

need to be calculated from different (a) 
samples;

can be converted by changing the plus or minus (b) 
sign, or vice versa;

would have confi dence intervals that do not cross the (c) 
line of unity;

are the inverse of one another.(d) 

An odds ratio over-estimates the relative risk if:2 
the relative risk is large;(a) 
the sample is not randomly selected;(b) 
the outcome of interest is common;(c) 
the disease is rare.(d) 

A relative risk can be used when:3 
the frequency of illness is the same as the population (a) 

prevalence;
a large sample of consecutive hospital patients is (b) 

enrolled;
the study has been designed with cases and matched (c) 

controls;
people who are exposed to the factor of interest are (d) 

unlikely to have the illness.

In case-control studies, an odds ratio is used because:4 
it is a close approximation of the relative (a) 

risk;
it will have smaller 95% confi dence intervals than the (b) 

relative risk;
the sample size is usually smaller than in population (c) 

studies;
the rate of illness does not approximate to the (d) 

population prevalence.

are symmetrical around the line of no risk (unity) because 
one is simply the inverse of the other.

By reciprocating the relative risk, we can calculate that the 
risk of redness at 6 hours conferred by a short, wide nee-
dle is 1/0.66 or 1.51 indicating that an extra 51% of infants 
will have redness when this type of needle is used. This 
estimate is a direct comparison of the approximate prob-
ability of redness of 60% in the group in which short, wide 
needles were used compared to the probability of 40% in 
the group in which long, thin needles were used. Similarly, 
the reciprocated odds ratio is 1/0.44 or 2.27. The difference 
between the relative risk and odds ratio shows how the odds 
ratio over-estimates the relative risk, in this case showing 
greater odds of an adverse reaction to short, wide needles 
than relative risk, because approximately half of the infants 
are exposed and the rate of redness is fairly common in 
each group.

Exercise

Using the paper by Diggle and Deeks (2000), reconstruct the 
2 × 2 tables for redness at 1, 2 and 3 days and calculate the 
relative risks and odds ratios as both protection and risk to 
complete Table 4.3.

After completing Table 4.3, answer the following questions.
For risk, what can you infer from the estimates of relative 1 
risk and odds ratio over time?
Does the difference between the estimates of relative risk 2 
and odds ratio vary with the frequency of the outcome?
Why do you think this happens?3 

Critical appraisal

Work through the critical appraisal checklist to review the 
set article by Diggle and Deeks (2000) and decide whether 

Figure 4.2 Converting estimates of risk and their 95% 
confi dence intervals from risk to protection, or vice versa.

No risk

0.1 1 10

Protective
factor

Risk factor

Estimate if
exposure protects

Estimate if 
exposure causes risk

Table 4.3 Relative risk and odds ratios for redness over 3 days

Redness Protection Risk

Relative risk Odds ratio Relative risk Odds ratio

6 hours 0.66 0.44 1.51 2.27
1 day
2 days
3 days 
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Critical appraisal checklist for an article reporting estimates of risk

Study designA. 

What is the design of the study?1. 

Was the sample randomly selected?2. 

Who do the results generalise to?3. 

Statistical methodsB. 

Are the proportions of patients with the outcome in the exposed and 4. 
non-exposed groups reported?

Has a relative risk or odds ratio been used correctly?5. 

Are the explanatory factors presented consistently as risk factors or protective 6. 
factors?

Are confi dence intervals included and do they help in interpreting the P values?7. 

Is more than one exposure presented and, if so, are all of the exposures 8. 
independent exposure factors?

ResultsC. 

Are the outcomes clinically relevant?9. 

How large was the effect of the exposures?10. 

How precise were the measures of effect as indicated by the confi dence intervals?11. 

InterpretationD. 

How relevant are the results to clinical practice?12. 

Have the effects been interpreted correctly?13. 
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EDITOR—A news item stated that “a review article  written 
by authors with affi liations to the tobacco  industry is 
88 times more likely to conclude that passive smoking 
is not harmful than if the review was written by authors 
with no connection to the tobacco industry.”1 We are 
concerned that readers may have interpreted this huge 
effect at face value. The proportions being compared 
(which were not given in the news item) were 29/31 (94%) 
and 10/75 (13%). The relative risk here is 7, which indi-
cates a strong association but is an order of magnitude 
lower than the reported odds ratio of 88.2 This value is 
correct but is seriously misleading if presented or inter-
preted as meaning that the relative risk that affi liated authors 
would draw favourable conclusions was 88, as it was in this 
news item.

The odds ratio is valuable in case-control studies where 
events are usually rare and the relative risk cannot validly 
be estimated directly. In prospective studies interpretation 
of the odds ratio as an approximation to the relative risk 
becomes unreliable when events are common, and thus its 
use for prospective studies, especially randomised trials and 
systematic reviews, has been criticised.3,4 The distortion is 

especially large when the event rate is high in only one group, 
as in this example. The odds ratio should not be interpreted as 
an approximate relative risk unless the events are rare in both 
groups (say, less than 20–30%).

The odds ratio remains especially useful when researchers 
need to adjust for other variables, for which logistic regression 
is the usual approach. While such analyses are valid, when 
the objective is to communicate study results to an audience 
unfamiliar with the relation between odds ratios and relative 
risks, surely it makes no sense also to report the relative risk 
when this differs markedly from the odds ratio.
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Odds ratios are a common measure of the size of an effect and 
may be reported in case-control studies, cohort studies, or 
clinical trials. Increasingly, they are also used to report the fi nd-
ings from systematic reviews and meta-analyses. Odds ratios 
are hard to comprehend directly and are usually interpreted as 
being equivalent to the relative risk. Unfortunately, there is a 
recognised problem that odds ratios do not approximate well 
to the relative risk when the initial risk (that is, the prevalence 
of the outcome of interest) is high.1, 2 Thus there is a danger that 
if odds ratios are interpreted as though they were relative risks 
then they may mislead.

The advice given in many texts is unusually coy on the mat-
ter. For example: “The odds ratio is approximately the same as 
the relative risk if the outcome of interest is rare. For common 
events, however, they can be quite different.”3 How close is 
“approximately the same,” how uncommon does an event have 
to be to qualify as “rare,” and how different is “quite different”?

This short note quantifi es the discrepancy between odds 
ratios and relative risks in different circumstances, and 
assesses whether such a discrepancy may seriously mislead if 
an odds ratio is used as an estimate of the relative risk.

Odds and risk
There is a problem with odds: unlike risks, they are diffi cult 
to understand. The risk of an event happening is simply the 
number of those who experience the event divided by the 
total number of people at risk of having that event. It is usu-
ally expressed as a proportion or as a percentage. In either case 
the meaning is usually clear.

In contrast, the odds of an event is the number of those 
who experience the event divided by the number of those 
who do not. It is expressed as a number from zero (event will 
never happen) to infi nity (event is certain to happen). Odds 
are fairly easy to visualise when they are greater than one, but 
are less easily grasped when the value is less than one. Thus 

odds of six (that is, six to one) mean that six people will expe-
rience the event for every one that does not (a risk of six out 
of seven or 86%). An odds of 0.2 however seems less intuitive: 
0.2 people will experience the event for every one that does 
not. This translates to one event for every fi ve non-events 
(a risk of one in six or 17%).

A second problem with odds is that, although they are 
related to risk, the relation is not straightforward. The table 
shows the odds for various risks. For risks of less than about 
20% the odds are not greatly dissimilar to the risk, but as the 
risk climbs above 50% the odds start to look very different.

Relative risks and odds ratios
The relative risk of one group compared with another is sim-
ply the ratio of the risks in the two groups. Thus the relative 
risk tells us how much risk is increased or decreased from an 
initial level. Again it is readily understood: a relative risk of 0.5 
shows that the initial risk has been halved; a relative risk of 3 
shows that the initial risk has been increased threefold.

The odds ratio is calculated in a similar way: it is simply the 
ratio of the odds in the two groups of interest. We know that 
if the odds ratio is less than one then the odds (and therefore 
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Summary points

If the odds ratio is interpreted as a relative risk it will always 
overstate any effect size: the odds ratio is smaller than the 
relative risk for odds ratios of less than one, and bigger 
than the relative risk for odds ratios of greater than one

The extent of overstatement increases as both the initial 
risk increases and the odds ratio departs from unity

However, serious divergence between the odds ratio and 
the relative risk occurs only with large effects on groups at 
high initial risk. Therefore qualitative judgments based on 
interpreting odds ratios as though they were relative risks 
are unlikely to be seriously in error

In studies which show reductions in risk (odds ratios of 
less than one), the odds ratio will never underestimate 
the relative risk by a greater percentage than the level of 
initial risk

In studies which show increases in risk (odds ratios of 
greater than one), the odds ratio will be no more than twice 
the relative risk so long as the odds ratio times the initial 
risk is less than 100%
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the risk too) has decreased, and if the odds ratio is greater 
than one then they have increased. But by how much? How 
do we interpret an odds ratio of, say, 0.5 or an odds ratio of 3? 
A lack of familiarity with odds means that many people have 
no intuitive feel for the size of the difference when expressed 
in this way.

When the risks (or odds) in the two groups being 
compared are both small (say less than 20%) then the odds 
will approximate to the risks and the odds ratio will approxi-
mate to the relative risk. Then interpretation is easy. But as 
the risk in either group rises above 20% the gap between the 
odds ratio and the relative risk will widen. A recent article in 
Bandolier concluded that “as both the prevalence [initial risk] 
and the odds ratio increase, the error in the approximation 
quickly becomes unacceptable.”2 But is this the case? In what 
circumstances will interpreting an odds ratio as though it 
were a relative risk lead to serious errors in interpretation?

Odds ratio as an approximation of 
relative risk
When faced with an odds ratio, we want to know the 
discrepancy between that odds ratio and the relative risk. 
Figures 1 and 2 show the extent to which the reported 
odds ratio underestimates or overestimates the relative 
risk for different odds ratios and a given level of initial risk 
(see appendix for calculations).

Figure 1 shows the underestimation of the relative risk by 
the odds ratio in studies that report odds ratios of less than 
one (typically studies of benefi t from treatment or  exposure). 
Even with initial risks as high as 50% and very large 
reductions in this risk (odds ratios of about 0.1), the odds 
ratio is only 50% smaller than the relative risk (0.1 for the 
odds ratio compared with a true value for the relative risk 
of 0.2). In fact, the discrepancy between the odds ratio and 
the true relative risk will never be greater than the initial risk 
(see appendix for proof).

Figure 2 shows the discrepancy between the odds ratio and 
the relative risk for studies which report odds ratios of greater 

than one (typically studies showing harm). Although large 
discrepancies between the odds ratio and the relative risk are 
possible, the odds ratio overstates the relative risk by less than 
50% for a wide range of both initial risks and effect sizes. For 
initial risks of 10% or less, even odds ratios of up to eight can 
reasonably be interpreted as relative risks; for initial risks up 
to 30% the approximation breaks down when the effect size 
gives odds ratios of more than about three. As a conservative 
rule of thumb, if the initial risk multiplied by the odds ratio 
is less than 100% then the odds ratio will overestimate the 
relative risk by less than twofold.

Does the discrepancy infl uence our 
interpretation?
The fi gures show that the odds ratio will always exaggerate 
the size of the effect compared with a relative risk. That is, 
if the odds ratio is less than one then it is always smaller than 
the relative risk. Conversely, if the odds ratio is greater than 
one then it is always bigger than the relative risk. Thus inter-
preting an odds ratio as though it were a relative risk could 
mislead us into believing that an effect size is bigger than is 
actually the case.

Crucially, however, large discrepancies are seen for only 
large effect sizes. Suppose an odds ratio of, say, 0.2 refl ects 
a true relative risk of 0.4. Such a discrepancy is unlikely to 
alter your view: this is a large reduction in risk whichever way 
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Figure 1 Amount by which odds ratios of <1 underestimate relative 
risk, for different odds ratios and different levels of initial risk.
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Figure 2 Amount by which odds ratios of >1 overestimate relative 
risk, for different odds ratios and different levels of initial risk.

Table 1 Comparing risks and odds

Risk Odds 

0.05 or 5% 0.053
0.1 or 10% 0.11
0.2 or 20% 0.25
0.3 or 30% 0.43
0.4 or 40% 0.67
0.5 or 50% 1
0.6 or 60% 1.5
0.7 or 70% 2.3
0.8 or 80% 4
0.9 or 90% 9

0.95 or 95% 19
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you look at it. This is particularly so as large discrepancies 
occur only when the initial risk is high and thus even modest 
changes in the relative risk will mean substantial gains. So, 
for studies which show reductions in risk, the odds ratio is 
unlikely to mislead: either it will be close in value to the relative 
risk or it represents a substantial effect for groups at high initial 
risk. Thus any qualitative judgment is unaltered by the discrep-
ancy between the odds ratio and the relative risk (see box).

The same logic holds for studies which show increases in 
risk. The discrepancy between the odds ratio and the relative 
risk becomes large only when there are large effects (a twofold 
or threefold increase in risk) for groups already at a large initial 
risk. Although the odds ratio may diverge quite sharply from 
the relative risk, by the time it does so the message conveyed by 
the different measures is the same: these are large effects.

Of course, although qualitative judgments may be 
unaltered by the odds ratio deviating from the relative risk, 
quantitatively we can still be led astray. Thus if we are 
interested in assessing the impact of interventions quanti-
tatively (for example, for a cost effectiveness analysis) then, 
for larger initial risks and substantial odds ratios, the actual 
relative risk should still be calculated.

Conclusion
The difference between the odds ratio and the relative 
risk depends on the risks (or odds) in both groups. So for 

any reported odds ratio, the discrepancy between that odds 
ratio and the relative risk depends on both the initial risk 
and the odds ratio itself. This is possibly why textbooks 
are coy about giving a single fi gure for risk beneath which it 
is acceptable to interpret odds ratios as though they were 
relative risks.

Odds ratios may be non-intuitive in interpretation, but in 
almost all realistic cases interpreting them as though they were 
relative risks is unlikely to change any qualitative assessment 
of the study fi ndings. The odds ratio will always overstate 
the case when interpreted as a relative risk, and the degree of 
overstatement will increase as both the initial risk increases 
and the size of any treatment effect increases. However, there 
is no point at which the degree of overstatement is likely to 
lead to qualitatively different judgments about the study. 
Substantial discrepancies between the odds ratio and the 
relative risk are seen only when the effect sizes are large and 
the initial risk is high. Whether a large increase or a large 
decrease in risk is indicated, our judgments are likely to be the 
same—they are important effects.

Appendix: Calculation of discrepancy between odds 
ratios and relative risks
If the proportions of subjects experiencing an event in two 
groups are P

1
 (initial risk) and P

2
 (post-intervention risk) 

then the relative risk is P
2
/P

1
 and the odds ratio is (1  P

1
)/ 

(1  P
2
)  relative risk. Simple algebra leads this multiplier to 

be recast as 1  P
1
 + (P

1
  odds ratio). However, it is conve-

nient to express the discrepancy between the odds ratio and 
the relative risk as a proportion of the relative risk. Therefore, 
for studies in which the odds ratio is < 1, 1 minus this mul-
tiplier is the discrepancy (P

1
  (P

1
  odds ratio)). For studies 

in which the odds ratio is > 1, the multiplier minus 1 gives 
the discrepancy ((P

1
  odds ratio)  P

1
). Figures 1 and 2 plot 

these discrepancy values (as percentages) for various initial 
risks and odds ratios.
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Example of use of odds ratios
The fortnightly review by Dennis and Langhorne, “So 
stroke units save lives: where do we go from here?” (BMJ 
1994;309:1273–7) reported outcomes after stroke (death 
or living in an institution) for patients managed in special-
ist stroke units compared with patients managed on gen-
eral medical wards. Specialist stroke units had the better 
outcomes, with a reported odds ratio of 0.66. The authors 
advised that an “odds ratio of < 1.0 indicates that outcome 
of care in a stroke unit is better,” and concluded that “patients 
with stroke treated in specialist units were less likely to die 
than those treated in general medical wards.” No further 
guidance was given on interpreting the quoted odds ratio.

Because the frequency of a poor outcome was very high 
(about 55%) there might be concern that the odds ratio is 
a poor estimate of the relative risk. In fact, the odds ratio of 
0.66 corresponds to a relative risk of 0.81—that is, the odds 
ratio underestimates the relative risk by just 19%. In other 
words, interpreting the odds ratio as a relative risk suggests 
a reduction in deleterious outcomes after stroke (death or 
living in an institution) of about a third compared with 
a more likely true reduction of about a fi fth. Clearly, in 
either case this represents a substantial reduction in poor 
outcomes for a patient group with a large initial risk.
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Introduction
As part of the UK childhood immunisation schedule, infants 
routinely receive diphtheria, pertussis, and tetanus (DPT) 
vaccine and Haemophilus infl uenzae type b (Hib) vaccine 
at 2, 3, and 4 months.1 Nationally available guidelines advise 
practitioners to administer primary vaccines to infants by 
deep subcutaneous or intramuscular injection using either a 
25 or 23 gauge needle but give no recommendation  regarding 
needle length.1 The question of optimum needle length for 
infant immunisation has not previously been addressed in 

Britain, despite calls from nurses for evidence on which to 
base immunisation practice. We conducted a randomised 
controlled trial of the two needle sizes currently used by UK 
practitioners to determine whether needle size affects the 
incidence of redness, swelling, and tenderness.

Participants and methods
Participants
Eight of 11 general practices approached in Buckinghamshire 
agreed to participate in the study. Practice nurses recruited 
healthy infants attending routine immunisation clinics. 
Parents received written information about the study when 
attending for the second primary vaccination and were asked 
if they wished to participate when they returned for the third 
vaccination. The only exclusion criteria were those normally 
applicable to a child receiving primary immunisations.1 We 
obtained ethical approval from the local ethics committee.

Interventions
Infants were allocated to receive their third primary immuni-
sation with either the 25 gauge, 16 mm needle or the 23 gauge, 

Abstract
Objective To compare rates of local reactions associated with two needle sizes used to administer routine immunisations 
to infants.
Design Randomised controlled trial.
Setting Routine immunisation clinics in eight general practices in Buckinghamshire.
Participants Healthy infants attending for third primary immunisation due at 16 weeks of age: 119 infants were recruited, 
and 110 diary cards were analysed.
Interventions Immunisation with 25 gauge, 16 mm, orange hub needle or 23 gauge, 25 mm, blue hub needle.
Main outcome measures Parental recordings of redness, swelling, and tenderness for three days after immunisation.
Results Rate of redness with the longer needle was initially two thirds the rate with the smaller needle (relative risk 0.66 
(95% confi dence interval 0.45 to 0.99), P = 0.04), and by the third day this had decreased to a seventh (relative risk 0.13 
(0.03 to 0.56), P = 0.0006). Rate of swelling with the longer needle was initially about a third that with the smaller needle 
(relative risk 0.39 (0.23 to 0.67), P = 0.0002), and this difference remained for all three days. Rates of tenderness were also 
lower with the longer needle throughout follow up, but not signifi cantly (relative risk 0.60 (0.29 to 1.25), P = 0.17).
Conclusions Use of 25 mm needles signifi cantly reduced rates of local reaction to routine infant immunisation. On 
average, for every fi ve infants vaccinated, use of the longer needle instead of the shorter needle would prevent one infant 
from experiencing any local reaction. Vaccine manufacturers should review their policy of supplying the shorter needle in 
vaccine packs.
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25 mm needle according to a computer generated blocked 
randomisation scheme stratifi ed by practice. Allocations were 
concealed in sequentially numbered opaque envelopes opened 
once written parental consent was obtained. Practice nurses 
were instructed verbally, by demonstration and in writing, 
to use the technique of injecting into the anterolateral thigh, 
stretching the skin taut and inserting the needle at a 90° angle 
to the skin.2 The right thigh was used, with the needle inserted 
into the skin up to the hub.

Outcomes
Parents recorded redness, swelling, and tenderness in a diary 
for three days after immunisation. The size of swelling and 
redness were measured with a plastic ruler, while the child’s 
reaction to movement of the limb or to touch of the site was 
graded with a standard scale. We supplied parents with a 
prepaid envelope to return the diary, and we contacted 
parents by telephone if return was delayed.

At the start of the trial all practices were using the 0.5 
ml mix of Pasteur-Merieux DPT/Hib vaccine. However, a 
change in national vaccine supply necessitated a switch to the 
1.0 ml mix of Evans DPT and Wyeth Lederle Hib-Titer. 
Blocked randomisation ensured that the numbers receiving 
each vaccine were evenly distributed between the groups.

Statistical analysis
In order to detect clinically important relative differences 
of 25% in tenderness and 30% in redness and swelling, 
we estimated that 250 infants should be recruited for the 
study to have 80% power of detecting differences at the 5% 
signifi cance level. In January 2000, problems with vaccine 
supply necessitated the temporary nationwide replacement 

of the whole cell component of the combined DPT/Hib 
vaccine with acellular pertussis vaccine.3 As this vaccine has 
a different local reactogenicity profi le, we decided to stop the 
trial early.

We used 2 tests to compare the proportions of children 
with each local reaction at 6 hours and 1, 2, and 3 days 
after immunisation. We compared differences in the size of 
reaction using a 2 test for trend.

Results
Of the 119 children recruited to the study, 61 were 
randomised to the 16 mm needle group and 58 to the 
25 mm needle group (see fi gure). Nine were not included in 
the analysis (four in the 16 mm needle group and fi ve in the 
25 mm group): diaries were not returned for eight, while 
the ninth was mistakenly included in the study at the second 
vaccination. Inclusion of this child did not materially affect 
the results. The two groups had similar baseline characteris-
tics (see table).

Over half of the infants vaccinated with the 16 mm  needle 
subsequently experienced redness and swelling (table). The 
rate of redness with the 25 mm needle was initially two 
thirds the rate with the 16 mm needle (relative risk 0.66 (95% 
confi dence interval 0.45 to 0.99)), and, by the third day, this 
had decreased further to a seventh (relative risk 0.13 (0.03 
to 0.56)). Similarly, rates of swelling after injection with the 
longer needle were initially around a third of those after use of 
the smaller needle (relative risk 0.39 (0.23 to 0.67)), and this 
difference was maintained for all three days. These differences 
were statistically signifi cant. Tenderness was less frequent 
and, although the rates of tenderness were also lower with the 
longer needle throughout follow up, the differences were not 
signifi cant (table).

Discussion
This study showed that both redness and swelling were 
signifi cantly reduced when the 23 gauge, 25 mm, blue hub 
needle was used instead of the 25 gauge, 16 mm, orange hub 
needle to administer the third dose of diphtheria, pertussis, 
and tetanus and Haemophilus infl uenzae type b vaccines to 
infants. The differences suggest that, for every three to fi ve 
infants vaccinated with the longer rather than the shorter 
needle, one case of redness and one of swelling would be 
prevented.

The needles compared in this study are those most 
commonly used in general practice.4 As they differed in both 
length (16 v 25 mm) and bore (25 v 23 gauge), we  cannot know 
which of these factors determined the observed  differences 
in the rates of redness and swelling. However, previous 
studies comparing injections given at different depths 
(subcutaneous versus intramuscular) with the same gauge 
needle have shown similar differences in local reactions.5, 6 We 
suggest that the length of the longer needle used in our study 
ensured that the vaccine reached the thigh muscle in 4 month 
old infants.

119 infants attending
for 3rd vaccination dose

Randomisation

Vaccination with 25 G 16 mm
“orange” needle

Vaccination with 23 G 25 mm
“blue” needle

61 infants vaccinated 58 infants vaccinated

3 lost to follow up
1 wrongly entered at 2nd

vaccination dose
5 lost to follow up

57 completed trial 53 completed trial

Flow chart describing randomisation sequence
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Baseline characteristics of 4 month old infants and rate of local reactions to immunisation over three days by needle used for 
vaccination. Values are numbers (percentages) of infants unless stated otherwise

Size of needle Difference between longer and shorter needle

Local reaction 23 G, 25 mm (n = 53) 25 G, 16 mm (n = 57) Relative risk (95% CI); P value Test for trend

Baseline characteristics
Mean (SD) weight (kg)* 6.7 (0.9) 6.8 (0.9)
Age at vaccination (weeks):
 16–17 37 (70) 36 (63)
 18–19 11 (21) 16 (28)
 20 5 (9) 5 (9)
Sex
 Male 34 (64) 30 (53)
 Female 19 (36) 27 (47)
Site of injection:
 Left leg 13 (25) 12 (21)
 Right leg 40 (75) 45 (79)
Vaccine type†:
 0.5 ml 8 (15) 8 (14)
 1.0 ml 45 (85) 49 (86)

Local reactions
Redness:
 At 6 hours 21 (40) 34 (60) 0.66 (0.45 to 0.99); P = 0.04 P = 0.007
 At 1 day 15 (28) 36 (63) 0.45 (0.28 to 0.72); P = 0.0002 P < 0.0001
 At 2 days 5 (9) 22 (39) 0.24 (0.10 to 0.60); P = 0.0004 P = 0.0004
 At 3 days 2 (4) 16 (28) 0.13 (0.03 to 0.56); P = 0.0006 P = 0.001
Swelling:
 At 6 hours 12 (23) 33 (58) 0.39 (0.23 to 0.67); P = 0.0002 P = 0.0009
 At 1 day 15 (28) 36 (63) 0.45 (0.28 to 0.72); P = 0.0002 P = 0.0001
 At 2 days 10 (19) 29 (51) 0.37 (0.20 to 0.69); P = 0.0005 P = 0.0007
 At 3 days 7 (13) 23 (40) 0.33 (0.15 to 0.70); P = 0.001 P = 0.002
Tenderness:
 At 6 hours 9 (17) 16 (28) 0.60 (0.29 to 1.25); P = 0.17 P = 0.4
 At 1 day 4 (8) 8 (14) 0.54 (0.17 to 1.68); P = 0.3 P = 0.4
 At 2 days 0 3 (5) 0 (not estimable); P = 0.09 P = 0.4
 At 3 days 0 1 (2) 0 (not estimable); P = 0.3 P = 0.2
Any local reaction 33 (62) 48 (84) 0.74 (0.58 to 0.94); P = 0.009

* Weight missing for three infants.
† 0.5 ml vaccine = Pasteur Merieux DPT/Hib. 1 ml vaccine = Evans DPT reconstituting Wyeth Lederle HibTiter.

What is already known on this topic
Most infants experience local reactions to routine vaccinations

Previous local reactions have been cited by parents as a 
disincentive to further vaccinations

National guidelines on immunisation do not specify a 
preferred needle length

What this study adds
Local reactions are signifi cantly reduced by use of the 
23 gauge, 25 mm, blue hub needle rather than the 25 gauge, 
16 mm, orange hub needle supplied by vaccine manufacturers

Although our study was not blinded, parents were not told 
which needle was used to vaccinate their child. We believe 
that if knowledge of needle allocation introduced bias into 
the results, it would be less likely that such bias would be 
in the direction of the longer needle.

These fi ndings are of clinical importance for those involved 
in administering infant immunisations. In the United 
Kingdom, where routine vaccines are currently supplied 
with the shorter needle, a change in the manufacturing pro-
cess is now required. Any factor that can reduce the rates of 
adverse reactions in childhood vaccinations has the potential 
to improve parental acceptance of vaccines7 and would be 
welcomed by practitioners.
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Aims

To understand the different types of clinical trials, the 
different ways in which the data from clinical trials can 
be analysed, and the role of a data and safety monitoring 
committee in conducting a clinical trial.

The different phases of clinical trials are usually classifi ed 
according to their purpose as shown in Table 5.1. Initially, 
the safety and effects of using a new treatment are usually 
established by animal studies. Following the results of these 
studies, a Phase I trial may be conducted to establish the 
safety of using a new treatment in a small group of say 20–30 
volunteers who may not necessarily have the symptoms that 
the new therapy is intended to treat. This type of study is 
used to evaluate side effects and pharmacological properties 
of drugs, such as safe dosage levels. After volunteer  studies 
are completed, Phase I trials involving a small group of 
participants who have the disease may also be conducted. 
These types of trials in selected groups of participants help 
to ensure that a new treatment or intervention is safe and 
feasible for testing in the general community.

Following the success of a Phase I trial, a Phase II  clinical 
trial may be conducted in a larger group of say 30–100 
participants who have the disease. Phase II trials are con-
ducted to establish the effi cacy of the new treatment under 
controlled conditions. In Phase II trials, toxicity is often eval-
uated and the benefi ts and harms of a new treatment under 
ideal clinical management are assessed. When the main aim 

Table 5.1 Classifi cation of clinical trials

Term Defi nition

Phase I trial Initial trial of a new treatment to assess safety 
and feasibility in a small group of volunteers 
who do not have the disease or patients with 
symptoms.

Phase II trial A clinical trial to measure effi cacy, that is, the 
effect of a treatment under ideal conditions, in 
patients with the disease.

Phase III trial Large randomised controlled trial or multi-
centre study to measure effectiveness in the 
community, that is, the effect of a treatment in 
general clinical practice.

Phase IV 
surveillance

Post-marketing survey to measure rare adverse 
events. 

Learning objectives
On completion of this unit, participants will be able to:

understand and identify different types of clinical    •

trials;
judge the value of intention-to-treat, treatment    •

received and interim analyses;
describe the role of data and safety monitoring    •

committees;
calculate event rates in treatment and control groups;   •

understand the meaning of number-needed-to-treat.   •

Background
Clinical trials
A clinical trial is a prospective study that is designed to 
measure whether a new treatment has benefi ts over and 
above either a sham/control treatment or an existing treat-
ment that is considered standard best care. In clinical trials, 
volunteer participants are enrolled to assess whether the 
new treatment is safe and effi cacious, that is, confers benefi t 
under ideal conditions, or effective, that is, confers benefi t 
under routine clinical practice or community health care 
conditions. A clinical trial can be used to ascertain whether a 
new treatment is better than existing treatment, or whether 
an existing treatment can be used effectively in a different 
way or in a different group of patients. Most clinical trials 
are used to evaluate drug therapies, but clinical trial designs 
are also appropriate for evaluating other forms of health care 
such as allied health practices or different methods of patient 
management. The new ‘treatment’ may be an  environmental 
intervention, such as a new dietary guideline, a change in 
exercise habits or avoidance of an environmental exposure 
rather than a drug therapy.
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is to investigate the effi cacy of newly developed treatment, 
Phase II trials may include a control group of participants 
who receive an inactive placebo or sham treatment and who 
therefore do not receive current standard care.

Phase II trials are often conducted in participants who are 
carefully diagnosed and who are selected as being likely to 
adhere to the new treatment regimen. Participants are usu-
ally required to follow a precise protocol and they are often 
closely monitored and receive more regular and personalised 
attention than can usually be provided in medical settings 
in the community. New treatments are initially tested in this 
way because if they do not confer a benefi t under ideal treat-
ment conditions then it is unlikely that they will have effi cacy 
in less controlled settings such as general practice.

Once safety and effi cacy are established, a more rigorous 
Phase III evaluation can be undertaken in a much larger 
number of participants to measure the effectiveness of the 
new treatment or intervention in the general community 
or in routine clinical practice. Phase III trials are used to 
measure whether a treatment does more good than harm 
under usual health care conditions in which factors such 
as misdiagnosis or poor participant compliance may occur. 
Phase III trials are always comparative, that is, participants 
receiving the new treatment are compared to a control group 
of participants who receive ‘current best practice’ treatment 
or a placebo treatment. However, it is unethical for an inac-
tive placebo treatment to be used in the community when 
there is evidence that ‘current best practice’ confers a benefi t. 
An important research concept is that practitioners must be 
in a position of equipoise, that is, they have no clear evidence 
that the current best practice treatment confers benefi t, 
before a placebo can be used as the control group treatment 
in a Phase III evaluation.1

In Phase II and III studies, participants are randomly allo-
cated to study groups to minimise the effects of confounders 
on the study results.2 Thus, the trial is called a randomised 
controlled trial, where ‘randomised’ describes the random 
allocation of participants to a group so that each  participant 
has an equal chance of receiving either treatment. The term 
‘controlled’ describes the inclusion of a comparison or  control 
group who receive standard best care treatment or a placebo. 
The process of randomisation balances the effects of both 
known and unknown confounders between the groups and, 
because of this, randomised controlled trials provide the most 
reliable and rigorous study design for collecting a high level 
of evidence of the effi cacy or effectiveness of an intervention. 
Experimental randomised controlled trials are superior to 
observational study designs because the effects of both bias 
and confounding on the study results can be minimised.

In clinical trials, bias can occur if participants suspect 
which treatment they will be allocated to receive or are aware 
of the treatment they are receiving. Researchers who are 
responsible for recruitment and who are aware of upcoming 
treatment allocations could route participants to a certain 

treatment. Thus, adequate allocation concealment, that is, 
participants and study personnel being unaware of upcoming 
treatment allocations, will prevent selection and confound-
ing bias before randomisation occurs and until allocation. In 
addition, participants may decline to enrol or may withdraw 
if they believe they will be in a specifi c group such as the 
control group. Participants who are aware of the treatment 
they are receiving often assume that the new treatment will 
be better than standard best treatment3 and this may infl u-
ence reporting of their symptoms or perception of the effect 
of their illness on their quality of life. In addition, awareness 
by study personnel of the group to which participants have 
been allocated may infl uence data recording practices sim-
ply because of the expectation that the new treatment will 
confer benefi ts. To avoid reporting and observer bias, both 
participants and researchers should be blinded (sometimes 
called ‘masked’) to treatment status, that is, have no knowl-
edge of the assigned treatment following randomisation.

If both researchers and participants are aware of treatment 
status, the trial is called an ‘open label’ trial. If one party is 
aware of treatment status, the trial is called ‘single blinded’. 
Trials in which both participants and researchers are unaware 
of treatment status are generally called ‘double-blind’ trials. It 
has been suggested that the term ‘double-blind’ is ambiguous 
because the defi nition of this term varies. In some clinical tri-
als reported as double blind, participants or researchers may 
not be blinded and more than two parties may be blinded. 
Other parties involved in the study, such as the pharmacist 
and statistician, should be blinded to treatment status in 
addition to the participants and the researchers to avoid bias.

Although a blinded design is preferred because it mini-
mises observer and reporting bias, blinding is not always 
possible. In most surgical trials it would be both unethical 
and impractical for control group participants to undergo 
surgery and have an incision to mimic the treatment 
delivered in the active group.4 When it is not possible to blind 
the observers to group status, objective outcome measure-
ments, such as lung function or biochemical tests, that are 
unlikely to be infl uenced by observer bias are preferred. In 
evaluating the results from a randomised controlled trial, 
details of who was blinded and how blinding was achieved 
should be appraised.

Following Phase III studies, Phase IV studies that involve 
post-marketing surveillance are often conducted to monitor 
any adverse rare or long-term effects of the treatment in the 
population over a longer time period than previously estab-
lished in Phase III studies. Phase IV surveillance is used after 
a treatment has shown to be effective and marketing approval 
has been obtained from regulatory authorities, such as the 
Therapeutic Goods Administration (TGA) or the Food and 
Drug Administration (FDA). However, post-marketing 
surveillance can be ineffi cient and there have been cases in 
which long periods have elapsed and many adverse events 
have occurred before drugs have been withdrawn from use.5
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Power and sample size
The sample size for a clinical trial needs to be large enough so 
that the smallest clinically valuable difference between groups 
reaches statistical signifi cance.6 Prior to conducting a trial, 
the treatment effect between groups that would be required 
for the experimental treatment to be regarded as more ben-
efi cial than the control or existing ‘best practice’ treatment 
should be specifi ed. It is critical that the sample size is large 
enough to ensure that estimates of benefi t have not arisen 
by chance and to provide precision, that is, 95% confi dence 
intervals around outcome measures that are acceptably small 
in each group. In estimating sample size, it is important 
to consider the power of a study, that is, the probability of 
detecting a meaningful difference if one exists. The power of 
a study will increase as the sample size increases. However, 
an under-powered study in which a clinically important 
difference between groups will fail to reach statistical sig-
nifi cance (a type II error) needs to be balanced against an 
over-powered study in which a small clinically unimport-
ant difference between groups will become statistically 
signifi cant (a type I error) as discussed in Unit 1.

Clinical trials with a small sample size may be unethical 
because their hypothesis cannot be properly tested. However, 
many small trials are conducted as preliminary studies to pro-
vide essential evidence that a larger trial is warranted. On the 
other hand, clinical trials with an overly large sample size may 
also be unethical because they require many more participants 
to be enrolled than are needed to test the study hypothesis. 
Limiting the sample size can be of prime importance if adverse 
outcomes are expected. In a review of mortality rates in two 
clinical trials, it was thought that hundreds of patients who 
were not needed to test the study hypotheses had been enrolled, 
and that over 50 deaths could have been prevented if the stud-
ies had been limited to smaller but adequate sample sizes.7

Intention-to-treat and as-treated analyses
The primary analyses from randomised controlled  trials 
should be conducted using ‘intention-to-treat’ analyses. 
Intention-to-treat analyses are designed to maintain the 
balance of both known and unknown confounders between 
groups that the randomisation process was intended to 
ensure. Thus, an intention-to-treat analysis requires that all 
participants be maintained in the group to which they were 
initially allocated regardless of any subsequent events, such as 
withdrawal from the study, not using the treatment, depart-
ing from the study protocol or choosing other treatments. 
In addition, participants should be included in intention-to-
treat analyses even if their fi nal outcome value was not col-
lected, for example if they were lost to follow-up or chose to 
withdraw. In this way, an intention-to-treat analysis provides 
an unbiased estimate of the effectiveness of a new treatment 
under the normal conditions of medical practice.

When critically appraising the results from a clinical trial, 
it is important to ascertain whether an intention-to-treat 

analysis was appropriately and adequately applied, because 
some studies fail to do this.8 When applying the intention-to-
treat principle, participants should be analysed in the study 
groups they were randomised to regardless of  compliance, 
withdrawal or protocol deviations. An intention-to-treat 
analysis can only be conducted when complete outcome 
data for all randomised participants are available. One way 
to assess whether the term ‘intention-to-treat’ has been used 
appropriately is by ascertaining how many participants had 
missing outcome data and how these missing outcomes were 
dealt with. Imputation is often used to replace missing val-
ues, for example by replacing the missing value by carrying 
the last value forward or by replacing with a mean value. 
These methods are not ideal but do maintain the benefi ts 
conferred by randomisation. In using these methods, an 
intention-to-treat analysis provides a conservative estimate 
of the treatment effect.9

Analyses that are considered secondary to intention-to-
treat analyses include an ‘available-case analysis’, in which 
data are analysed for only the participants in whom the 
fi nal study outcomes were collected. In addition, ‘treatment-
received’ (also called ‘as-treated’) analyses are commonly 
conducted in which participants are regrouped according to 
the treatment they actually received irrespective of the group 
to which they were allocated. Available-case and treatment-
received analyses provide estimates of the treatment effect 
under more optimal conditions of compliance, but the 
results are likely to be infl uenced by the effects of confound-
ers and will often provide a more optimistic treatment effect 
than intention-to-treat analyses.

Interim analyses
The term ‘interim analysis’ is used to describe any data 
analysis that is conducted before all of the participants have 
completed the study. Even though interim analyses can be 
conducted without breaking the randomisation code, they 
should be planned before the study begins and should be 
undertaken as rarely as possible. An important purpose of 
an interim analysis is to decide whether a trial should be 
stopped early to protect the safety of the participants. If a 
treatment has a high rate of adverse outcomes, an interim 
analysis can help to ensure that current participants will not 
continue in a trial any longer than is needed to test the study 
hypothesis, and that future participants will not receive an 
inferior treatment.

Another common use for an interim analysis is to make an 
internal validation of the adequacy of the planned fi nal sample 
size, and to recalculate the sample size required if the treat-
ment difference is smaller than expected. If the treatment effect 
is smaller than expected, then larger numbers of participants 
will be required to show a statistically signifi cant difference 
between groups. However, if the treatment difference is larger 
than expected, it is usual to maintain the initial sample size cal-
culation rather than stopping the trial early to ensure precision 
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DSMC if any concerns about safety arise during the trial. 
In monitoring safety and effi cacy indicators, a DSMC can 
recommend either stopping, continuing or modifying the 
trial at any point.13 Ideally, a DSMC should be appointed 
in Phase III studies, but not all trials require a DSMC 
and considerations such as the duration of study, type of 
treatment and potential adverse events infl uence decisions 
about whether a DSMC needs to be appointed.

If a DSMC is appointed, the committee must have access 
to original data including the treatment the participants 
were assigned to receive. These data provide more immedi-
ate information than can be provided by aggregated data that 
can mask a high adverse event rate in one group if the adverse 
event rate in the other group is low.7 In addition to reviewing 
adverse and unexpected events, the DSMC should also have 
the responsibility of planning, conducting and acting on any 
interim analyses. The advantages of appointing an indepen-
dent DSMC is that the ethical conduct of the trial can be 
ensured without any compromise to scientifi c integrity.

Number-needed-to-treat
When deciding how to apply the results of a randomised 
controlled trial to decision making in a clinical setting, it 
is often important to have treatment objectives. For this, 
the number of people who need to receive a new treat-
ment to prevent one adverse event occurring can be a useful 
statistic. This statistic, which is called number-needed-to-
treat (NNT), provides an absolute measure of treatment 
effect. As such, NNT may have a more practical value in a 
clinical setting than statistics such as a chi-square, P value 
or a relative risk, which only indicate the extent to which the 
new treatment and the outcome are related to one another. 
In clinical practice, NNT also provides a more practical 
estimate of effect than an odds ratio, which only shows the 
odds of an outcome if a patient receives the new treatment 
compared to the odds if the control treatment is received 
(see Unit 4).

Glossary

Term Defi nition

Intention-to-treat 
analysis

All participants are analysed in the 
group to which they were allocated, 
regardless of subsequent events such 
as non-compliance or withdrawal from 
the study. This provides a conservative 
estimate of treatment effect that is not 
infl uenced by confounders. 

Available-case 
analysis

Only participants with fi nal study 
outcomes are included in the data 
analysis, but participants are maintained 
in the group to which they were 
allocated. The results may be infl uenced 
by bias and confounders. 

Treatment-
received-analysis 

Participants are re-grouped according 
to the treatment they actually received, 
irrespective of the treatment to which 
they were allocated. Using this method, 
there is no control of confounders. 

around the estimates, and because a large effect that occurs 
when the sample size is small may be an early random event.

Interim analyses can play an important part in  managing 
a clinical trial, but undertaking this type of analysis too early 
when the sample size is small, or too frequently, increases 
the chance of fi nding a false-positive interim result.10 
More importantly, if the people in the research team are 
not blinded to the results of the interim analyses, there is a 
potential for observer bias to be introduced into future data 
collection as a result of expectation of effect, especially if 
they are not blinded to the treatment status of participants. 
Thus, interim analyses should be planned carefully and only 
performed under controlled conditions in which everyone in 
the research team is blinded to the results. This process helps 
to maintain the scientifi c integrity of the study and helps to 
ensure the validity of the study results.

Data and safety monitoring committees
The primary objective of a data and safety monitoring 
committee (DSMC) is to ensure the safety of trial partici-
pants by providing a process for the ongoing review of study 
events and study outcomes that is independent of the research 
team, steering committee and trial sponsors.11,12 A DSMC 
can play an important part in managing a randomised con-
trolled trial. The committee is usually comprised of three to 
fi ve members – often including a clinician, a statistician, a 
pharmacologist and/or an ethicist. The people on the DSMC 
should be the only people who can be unblinded to the 
otherwise blinded aspects of the study.

The DSMC members should meet at scheduled 
intervals, but the study team may call a meeting of the 

Glossary

Term Defi nition

Number-needed-
to-treat (NNT)

The number of people who need to 
receive a new treatment to prevent one 
adverse event occurring. 

Control event rate 
(CER) 

The frequency of the outcome in the 
control (current best practice treatment 
or placebo) group.

Experimental event 
rate (EER)

The frequency of the outcome in the 
experimental (new treatment) group.

Absolute risk 
reduction (ARR)

The reduction in risk (probability of the 
outcome) that is conferred by the new 
treatment.
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Reading and questions
Reprints
Altman DG. Randomisation: essential for reducing bias. BMJ 
1991; 302:1481–1482. (See p. 64.)
Heritier SR, Gebski VJ, Keech AC. Inclusion of patients in 
clinical trial analysis: the intention to treat principle. Med J 
Aust 2003; 179:438–440. (See p. 66.)

After reading the reprints, answer the following questions.
What methods are best used to randomly allocate 1 
participants to study groups and why?
What methods are used to reduce bias in clinical trials?2 
How can allocation concealment be achieved?3 
What are the advantages and disadvantages of using 4 
intention-to-treat analyses?
Why are treatment-received analyses often reported and 5 
what are their limitations?

Worked example
Set article
Miranda-Filho DB, Ximenes RA, Barone AA, Vaz VL, Vieira 
AG, Albuquerque VMG. Randomised controlled trial of 
tetanus treatment with antitetanus immunoglobulin by the 
intrathecal or intramuscular route. BMJ 2004; 328:615–618. 
(See p. 37.)

The paper by Miranda-Filho et al. (2004), which was 
included as the set article in Unit 3, reports on the clini-
cal progression of tetanus as measured in a randomised 
controlled trial. Participants in an intensive care unit were 
randomised to receive one of two treatment groups, that is, 

To calculate NNT, the two binary variables that represent 
the outcome groups and the treatment groups are displayed in 
a 2 × 2 contingency table similar to Table 3.1 shown in Unit 3. 
In Table 5.2, a 2 × 2 contingency table is used, except the out-
come (adverse event present or absent) and exposure (new 
treatment group vs control treatment group) are re-labelled to 
be consistent with the terms used in a clinical trial.

The frequency of the outcome in the new treatment group 
is the row proportion a/(a + b) and is called the experimen-
tal event rate (EER). Similarly, the frequency of the outcome 
in the control group is the corresponding row proportion 
c/(c + d) and is called the control event rate (CER). If the EER 
is less than the CER this suggests a potential benefi t from 
the new treatment. For calculating NNT, both the EER and 
the CER are calculated as proportions rather than percentages. 
From these proportions, the absolute risk reduction (ARR), that 
is, the reduction in risk that is conferred by the new treatment, 
can be calculated. The ARR is simply the absolute difference in 
frequency rates between the two study groups as follows:

Experimental event rate (EER) = a/(a+b)
Control event rate (CER) = c/(c+d)
Absolute risk reduction (ARR) = CER−EER

and the NNT is the reciprocal of the ARR and can be 
calculated as:

Number needed to treat (NNT) = 1/ARR

Thus if the ARR is low, say 0.1, indicating that is there is little 
difference in the frequency of the outcome between the con-
trol and new treatment groups, then the NNT will be large 
at 1/0.1, or 10, indicating that 10 people will need to receive 
the new treatment to prevent one adverse event occurring. 
Conversely, if the ARR is higher, say 0.3, indicating a larger 
difference in the frequency of the outcome between the 
control and new treatment groups, the NNT will be smaller 
at 1/0.3, or approximately 3, indicating that only 3 people 
need to receive the new treatment to prevent one adverse 
event occurring. Obviously, for translating this statistic into 
use in clinical practice, NNT is rounded to a whole number. 
The size of the NNT that is clinically important, such as the 
number of children who need to undergo surgery to prevent 

one adverse outcome or the number of people who need to 
receive a new drug to prevent one coronary event, depends 
on the nature of the treatment and the severity of the 
outcome and can only be judged by experts in the fi eld.

Table 5.2 Contingency table of data from a randomised 
controlled trial

Adverse event 
present

Adverse event 
absent

Total

New treatment 
group

a b a + b

Control treatment 
group

c d c + d

Total a + c b + d Total

TAKE HOME LIST

Randomising participants to study groups balances both • 
known and unknown confounders between the study 
groups.

In randomised controlled trials, blinding the participants, • 
observers, pharmacists and statisticians to treatment status 
helps to minimise both observer and reporting bias.

Randomised controlled trials provide the most rigorous • 
study design for collecting a high level of evidence of the 
effi cacy or effectiveness of a new treatment.

The roles of a data and safety monitoring committee are • 
to ensure the safety of participants and to plan, conduct 
and act on any interim analyses.
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anti-tetanus immunoglobulin by either the intrathecal and 
intramuscular route (new treatment or study group) or the 
intramuscular route (control group). At day 4, there were 
53 participants remaining in both the treatment study group 
and the control group. This sample size is moderately large 
for a single centre study.

Using the data shown in Table 3 of the article at day 4, the 
ARR for reduction of tetanus from grade III–IV to grade I–II 
is the event rate in control group (30/53) subtracted from the 
event in the study group (11/53), which is 0.57 − 0.21, or 0.36. 
The NNT is therefore 1/0.36 or 2.78 which can be rounded to 3. 
This indicates that three people need to receive anti-tetanus 
immunoglobulin by the intrathecal and intramuscular route to 
prevent one person remaining in grade III–IV tetanus on day 4.

In the article, Table 3 also shows that at day 10, there were 
43 participants remaining in the control group and 39 in the 
new treatment group. At this time point, the ARR for reduc-
tion of tetanus from grade III–IV to grade I–II at day 10 is 
23/43 − 7/39 which is 0.53 − 0.18, or 0.35. The NNT is there-
fore 1/0.35 which can be rounded to 3. The NNT at day 10 
is the same as day 4. Although NNT can be infl uenced by 
the time at which the outcome is measured, the NNT in this 
study has remained stable from 4 to 10 days after admission.

Exercise

In the set article by Miranda-Filho et al. (2004) (see p. 37), 
use Table 5.2 and the formulas presented in this unit to 
calculate NNT for complications, respiratory infection, 
respiratory failure or mechanical ventilation and death, 
presented in Table 5 of the article, and complete Table 5.3.

After completing Table 5.3, answer the following questions.
How do the NNT values compare and which NNT  •

value would be the most important for deciding which 
treatment to use?
In the study, there were 10 deaths in the control group  •

and 4 deaths in the new treatment group. If the reverse 
had happened, that is, there were 10 deaths in the new 
treatment group compared to 4 in the control group, 
what would the NNT be?

What type of analyses does the paper report  •

(intention-to-treat, available-case analysis or 
treatment-received)? How does this infl uence how you 
would interpret the results?

Quick quiz

Tick the correct answer for each of the following questions:

What type of trial is reported in the Miranda-Filho 1 et al. 
(2004) article?

Phase I(a) 
Phase II(b) 
Phase III(c) 
Phase IV(d) 

When the CER and EER are equal, indicating no treat-2 
ment effect, what value will the NNT take?

Negative(a) 
Zero(b) 
Positive(c) 
Infi nity(d) 

What does a data and safety monitoring committee 3 
(DSMC) do?

Monitor the ways in which the outcome and safety (a) 
data are collected.

Report adverse events to the ethics committee.(b) 
Advise on procedure if an adverse event occurs.(c) 
Provide statistical assistance with analyses.(d) 

Why is sample size important in clinical trials?4 
With a large sample size, the effects of confounding (a) 

are minimised.
An adequate number is needed to show a clinically (b) 

important treatment effect.
Large clinical trials reduce bias and therefore provide (c) 

more reliable results.
Results from trials with a large sample size are more (d) 

ethical.
Larger numbers of participants tend to increase (e) 

treatment differences between groups.

Critical appraisal

It is essential to critically appraise results reported from 
trials to decide whether they are valid before applying 
the information in clinical practice.14 Work through the 
critical appraisal checklist to review the set paper by 
Miranda-Filho et al. (2004) and decide whether the results 
warrant a change in clinical practice and, if so, in which 
group of patients.

Table 5.3 ARR and NNT for complications and mortality 
for tetanus by intrathecal and intramuscular route or the 
intramuscular route

Outcome CER EER ARR NNT

Complications

Respiratory infection

Respiratory failure or 
mechanical ventilation

Death
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Critical appraisal checklist for an article that reports the results of a randomised 
clinical trial

Study designA. 

What phase is the study design (I, II, III or IV)?1. 

Was the trial properly randomised?2. 

Was the treatment compared to standard best treatment or to a placebo 3. 
treatment?

Have precise details of the new treatment intervention been given?4. 

Is the sample size adequate?5. 

Do the results reported constitute an interim analysis and how might this 6. 
affect the ongoing trial?

Was a data and safety monitoring committee appointed?7. 

Statistical methodsB. 

Is NNT reported?8. 

Was the statistician blinded to group status?9. 

Was an intention-to-treat analysis conducted?10. 

ResultsC. 

Are the baseline characteristics of the groups comparable?11. 

Are compliance rates in each group reported?12. 

Are the primary outcomes clinically important?13. 

Are important adverse events reported?14. 

InterpretationD. 

Which patient or population group do the results generalise to?15. 

Have the results been interpreted appropriately?16. 
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In the past year the BMJ has rejected several otherwise 
satisfactory studies for publication because of faulty 
randomisation. How can researchers avoid this fate for 
their papers?

Randomisation is one of many statistical ideas that have 
permeated medical research but are imperfectly understood. 
Its use is most familiar in controlled trials, where patients 
are given one of two or more treatments chosen at random. 
The purpose is to eliminate possible biases that may lead to 
systematic differences between the treatment groups — in 
particular to eliminate any infl uence on the allocation of 
treatment by the investigator (either subconscious or 
deliberate).

Random does not mean the same as haphazard: random 
allocation in a clinical trial means that all patients have 
the same chance of receiving any particular treatment 
(and in most cases each treatment is equally likely). 
Patients should be entered into a trial before their allocation 
to a particular treatment is known. A common misconcep-
tion exists that allocation based on, for example, odd or even 
dates of birth or hospital numbers is random. These 
systematic allocation methods, however, clearly violate 
the requirement that all patients have the same chance of 
receiving each treatment. Alternate allocation does not 
in principle suffer from such problems, but there is a risk 
of abuse because the investigator’s knowledge of the next 
treatment may lead to some patients being excluded 
from the trial1 — making this method inadvisable. Trials 
using these inferior methods of allocation are not aceptable 
to the BMJ.

Even with proper randomisation a risk of bias exists when 
the investigators are aware of the treatment awaiting the next 
patient to be entered into the trial. Better to use a method of 
allocation that aims to remove the problems of bias — such 
as by telephone to a randomisation centre, by the pharmacy, 
or by a secure system of sequentially numbered opaque sealed 
envelopes. These are the considerations that underlie the 
requirement to provide information about the method of 
randomisation in the statistical checklist used by the BMJ’s 
statistical referees.2

Exclusion of some of the randomised patients from the 
analysis of a controlled trial, for whatever reason, will destroy 

the unbiased comparison of treatments. This is the reason for 
the recommendation to analyse all randomised patients in the 
groups they were allocated to, even if some did not receive 
the intended treatment (an “intention to treat” analysis). For 
controlled trials, it is desirable for the groups receiving each 
treatment to be as similar as possible. Simple randomisation 
does not guarantee this for any particular trial, especially if 
the sample is small.3 Imbalance may be greatly reduced by 
using stratifi ed randomisation.1

In some circumstances randomisation is not possible, 
either for ethical reasons or because few patients are willing 
to be randomised. An unrandomised study of concurrent 
groups treated differently on the basis of clinical judgment or 
patient preference, or both, will need careful analysis to take 
account of differing characteristics of the patients and may 
still be of doubtful value. Failure to use randomisation when 
it could be used may fatally compromise the credibility of 
research, as happened in a study of periconceptional vitamin 
supplementation.4

Randomisation is also valuable in other types of research. 
In surveys it may not be practicable to contact the whole 
target population. A representative subset can be chosen by 
random sampling, whereby each person is equally likely to 
be selected. A low response rate will negate the advantage of 
random selection because of the strong possibility that those 
who respond are a biased subset. Thus it is more sensible to 
put resources into trying to get complete information from a 
random sample than to get poor data from the whole popula-
tion of interest.5 Random sampling is feasible only when there 
is a list of all members of the relevant population. A sample 
survey can be made more representative of the population by 
stratifi ed sampling — for example, to preserve the age-sex 
distribution.

Likewise, in case-control and cohort studies it may not be 
feasible to investigate all of the people of interest — again, 
random samples should be taken. Randomisation also has a 
place in laboratory experiments — for example, when locating 
samples on a 6×6 plate in an automatic analyser. Comparative 
experiments on animals should also use random selection of 
animals rather than using those most easily caught.6

In all types of study the use of randomisation means that 
no systematic bias is introduced and the samples selected 
should be representative of the populations of interest. Once 
the principles are understood, random selection or  allocation 
is straightforward, using tables of random numbers or a 
random number generator on a computer.1 The use of ran-
domisation does not obviate the need for care in other aspects 

Head, Medical Statistical Laboratory,
Imperial Cancer Research Fund,
London WC2A 3PX
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of the design and analysis of research. For example, though 
randomised controlled trials are widely agreed to yield the 
most reliable scientifi c information, careless or inappropriate 
analysis may lead to misleading conclusions. The standard of 
statistics in published reports of clinical trials can be greatly 
improved.7, 8
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Determining the sample of participants to be analysed 
is a crucial step in reporting clinical trials. For such analy-
ses, the gold standard is the “intention-to-treat” principle. 
The question of which participants are included in the 
analysis appears as Item 16 of the CONSORT statement 
(Box 1)1

Intention-to-treat (ITT)
Analysis by ITT is a strategy that compares the study groups 
in terms of the treatment to which they were randomly 
allocated, irrespective of the treatment they actually received 
or other trial outcomes. Regardless of protocol deviations and 
participant compliance or withdrawal, analysis is performed 
according to the assigned treatment group.2,3

Random allocation aims to ensure that trial participants’ 
risk factors that may affect the outcome under investigation are 
balanced between the allocated treatments. This is to ensure 
that any differences in outcomes observed between groups 
are actually a result of the trial interventions. Importantly, 
there can be no guarantee that participants from each group 
who do not comply with the allocated treatment have the same 
risk-factor profi le. Any analysis other than an ITT analysis 
(eg, one that excludes non-compliant participants) will 
potentially compromise the balance of these factors and 
introduce bias into the treatment comparisons.

Thus, the ITT strategy generally gives a conservative 
estimate of the treatment effect compared with what would 
be expected if there was full compliance. By accepting that 
non-compliance and protocol deviations are likely to occur 
in actual clinical practice,3,4 ITT essentially tests a treatment 
policy or strategy, and avoids overoptimistic estimates of 
the effi cacy of an intervention resulting from the removal of 
non-compliers.
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2:  Advantages and limitations of an intention-to-treat 
(ITT) analysis

Advantages
Retains balance in prognostic factors arising from the  •
original random treatment allocation
Gives an unbiased estimate of treatment effect •
Admits non-compliance and protocol deviations, thus  •
refl ecting a real clinical situation

Limitations
Estimate of treatment effect is generally conservative  •
because of dilution due to non-compliance
In equivalence trials (attempting to prove that two  •
treatments do not differ by more than a certain 
amount), this analysis will favour equality of treatments
Interpretation becomes diffi cult if a large proportion  •
of participants cross over to opposite treatment arms

Requirements for an ideal ITT analysis
Full compliance with randomised treatment •
No missing responses •
Follow-up on all participants •

ITT analysis is highly desirable unless:
There is overwhelming justifi cation for a different  •
analysis policy (eg, an unacceptably high proportion 
of ineligible participants — those without the disease 
under study, for whom there is no potential benefi t 
from the intervention. In these circumstances a 
“quasi” ITT approach (in which ineligible patients are 
excluded) is more appropriate.

1:  CONSORT checklist of items to include when 
reporting a trial

Selection and topic Item no. Descriptor

Numbers analysed 16 Number of participants 
(denominator) in each 
group included in each 
analysis, and whether the 
analysis was by “ intention 
to treat”. State results in 
absolute numbers 
(eg, 10/20, not 50%).
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Ensuring ITT produces meaningful answers
The reality of conducting clinical trials means that the ITT 
principle is not usually fully met, especially when outcome 
data are missing for some participants. However, clinical trial 
researchers should consider this principle an ideal, and steps 
to achieve it should be considered in both the design and 
conduct of a trial.

Firstly, eligibility errors can be avoided by careful scrutiny 
before random allocation. Indeed, allocation of ineligible 
patients should be the exception, unless eligibility cannot 
be assessed quickly. Secondly, all efforts should be pursued 
to ensure minimal dropouts from treatment, crossover of 
participants between groups and losses to follow-up. An 
active run-in phase may be feasible to identify patients who 
are likely to drop out. A thorough consent process for par-
ticipants and education of investigators will also minimise 
the number of dropouts. During the trial, adequate warning 
of the potential side effects of treatment, together with ongo-
ing clinical support and reassurance, should be available to all 
participants. When a proportion of participants are expected 
to receive a treatment different from the assigned one, a dilu-
tion effect generally results. The subsequent potential loss of 
study power can be accounted for by increasing the planned 
sample size.5

Box 2 details the advantages and limitations of ITT 
analyses.

Alternatives to ITT analysis
Per-protocol (PP) analysis
There is a view that only patients who suffi ciently  complied 
with the trial’s protocol should be considered in the analy-
sis.6 Compliance covers exposure to treatment, availability of 
measurements, and absence of major protocol violations. 
Such an analysis is often referred to as a “per-protocol” or 
“on treatment” analysis. The main issue arising from this 
approach is that it might introduce bias related to excluding 
participants from analysis. Therefore, the ITT analysis should 
always be considered as the ideal primary analysis, possibly 
supplemented by a secondary analysis using the PP approach. 
However, if investigators decide differently, their choice must 
be justifi ed and should be subject to strict rules.7–9

Treatment-received (TR) analysis
Another approach is to analyse all participants according 
to the treatment they actually received, regardless of what 
treatment they were originally allocated. While this may 
have some initial appeal, once again the effect of random 
allocation is compromised, making the interpretation of the 
results diffi cult.

The impact of various approaches is illustrated in Box 3.

When ITT requirements are not fully met
A number of strategies can be adopted if the assumptions 
underpinning ITT are not satisfi ed.

If the crossover/non-compliance rates are small, then an 
ITT analysis should be the principal method of analysis. 

There is still some debate about whether ineligible subjects 
can legitimately be omitted from the fi nal analysis.2 For 
instance, in a study involving a potentially life-threatening 
condition, such as severe acute respiratory syndrome, treat-
ment may be routinely commenced before laboratory con-
fi rmation of the diagnosis. If the patients subsequently are 
not diagnosed with the condition, there may be a case for 
excluding them from the ITT population. In these instances, 
a “modifi ed” or “quasi” ITT population may be defi ned, 
allowing for such exclusions. The following principles should 
be followed to allow participants to be excluded from such 
an analysis:

the criteria for exclusion from the analysis should be  •
pre-specifi ed in the protocol, be objective and clearly 
defi ned;7,8 and,
to remain unbiased, decisions to exclude participants  •
need to be made (i) by researchers blinded to treatment 
allocation, and (ii) on the basis of information not related 
to either the allocated treatment or to events or outcomes 
that occur after random allocation.
In all circumstances, all patients randomly allocated to 

a study arm should be followed up, as exposure to study 
treatment may still infl uence their safety and place them at 
risk of serious adverse events. All efforts must be made to 
ensure maximum compliance and that patients continue 
to take their allocated treatments, and that all patients are 
accounted for in the trial report.9

The modifi ed or quasi ITT population may also be use-
ful when outcomes are not assessed in all participants. For 
example, outcomes requiring colonoscopic follow-up can 
result in no information for patients who, for any reason, did 
not undergo colonoscopy during the study, requiring an 
analysis based on a subset of the patient population.10 In such 
a case, modifying the ITT population allows some clinical 
interpretation of the results.

A more extreme example is a study evaluating hip 
protectors, in which only around 50% of those in the inter-
vention arm were wearing a hip protector at the time of their 
fracture.11 In this situation, neither an ITT or per-protocol 
analysis would necessarily provide reliable information about 
the value of hip protectors when actually worn.

There has been debate about the appropriateness of 
imputing missing values.4 If missing data are imputed, it is 
recommended that some sensitivity analysis be performed to 
ensure that study conclusions are not misleading.4,12

Conclusion
ITT analysis gives unbiased and consistent estimates of 
a treatment policy, and should, wherever possible, be the 
analysis of choice. Deviations from this principle  compromise 
the balance between groups that is achieved by random 
allocation, and are rarely justifi able as a principal analysis.
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3:  Example illustrating the impact of intention-to-treat, per-protocol and treatment-received analyses in a 
placebo-controlled trial*

Treatment group (n = 1000) Control group (n = 1000)

Compliers
Non-compliers 

(drop-outs) Compliers
Non-compliers 

(drop-ins)‡

Compliance 80%†‡ 800† 200† 800‡ 200‡

Untreated baseline risk 10% 10% 7.5% 20%

Number of events without 
any treatment

80 20 60 40

Overall event rate 100/1000 = 10% 100/1000 = 10%

Expected number of 
events

Expected benefi t (relative risk 
reduction)

Full compliance 80 100 20% benefi t (1 – [80/100])

Intention-to-treat analysis 64 20 60 32 9% benefi t (1 – [84/92])

Per-protocol analysis 64 — 60 — 7% detriment (1 – [64/60])

Treatment-received 
analysis

80 20 60 32 40% detriment (1 – [112/80]§)

Trial assumptions.

* The average risk of each group is 10% over the long term trial duration, and active treatment, when taken, reduces the 
risk by 20%.
† 20% of those allocated to receive the active drug do not take it because of early side-effects unrelated to the study outcome.
‡ 20% of those allocated to receive the matching placebo medication are prescribed the active therapy because of early clinical 
deterioration of their condition directly related to their risk of study outcome (these participants are a high-risk subset and have 
double the average risk [ie, 20%]).
§ This comprises expected events in those taking the active drug (treatment group compliers and control group non-compliers) 
divided by those not taking the active drug (control group compliers and treatment group non-compliers).
A simple adjustment factor to obtain a better estimate of what might happen with full compliance (100%) compared with 
observed compliance (80% for each group) can be applied to the ITT benefi t (ie, 9% x 100/80  100/80 = 13% benefi t).
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UNIT 6

Comparing mean values

69

Aims

To understand the statistical methods used to compare the 
mean outcome values of two study groups, and to  recognise 
features of the data analyses that may bias the summary 
statistics and therefore the interpretation of the results.

of the outcome measurement approximates to a normal 
distribution. When the frequency distribution of the 
outcome measurement follows a bell-shaped curve and is 
symmetrical about the central mean value, it is said to have a 
normal distribution.

Figure 6.1 shows the sample distribution of weight at 
one month of age in 100 babies who were born at term 
and who were selected randomly from the population. The 
distribution is approximately normal because it does not 
deviate in a large way from the shape of the bell curve that 
has been superimposed and is symmetrical around the mean 
value of 4.6 kg.

In comparing mean values when the explanatory (group) 
variable is binary and the outcome (group) variable has a 
normal distribution in each group, either an unpaired z-test 
or an independent samples t-test is the correct statistic 

Learning objectives
On completion of this unit, participants will be able to:

decide whether to use a parametric method    •

(independent samples t-test or unpaired z-test) or 
a non-parametric method (Mann–Whitney U test) 
to compare an outcome measurement between two 
groups;
calculate and interpret the results from an    •

independent samples t-test;
calculate effect sizes and 95% confi dence intervals    •

around differences between mean values;
interpret fi gures which report mean values in    •

graphical form.

Background

In medical research, we often want to compare the mean 
value of an outcome measurement between two groups, 
say, between male and female, in an observational study 
or between a control group and an intervention group in 
an experimental study. For example, in a cross-sectional 
study, we may want to compare mean blood cholesterol 
levels between male and female or between people who are 
normal weight or overweight. In a clinical trial, we may want 
to compare mean fi tness levels or mean body mass index 
in people who have been randomised to receive either an 
aerobic programme or a weight training schedule.

For applications such as this, parametric or non-
parametric methods can be used to determine if a con-
tinuous outcome measurement is different between two 
groups. Parametric methods are used when the distribution 
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Figure 6.1 Distribution of weight at 1 month of age in 
100 babies.
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70   UNIT 6  Comparing mean values

to use. A z-test is also known as a normal distribution test 
and an independent samples t-test is also known as a two-
sample t-test, a Student’s t-test or an unpaired t-test. These 
tests are parametric tests that are used to assess whether 
there is a signifi cant difference between the mean values 
of two study groups. A t-test is provided by most statistical 
packages and is appropriate when the sample size has at least 
30 participants. A z-test is appropriate when the sample size 
is very large, say, at least 100 participants in each group, but is 
rarely used in clinical research. When the sample size is large 
and the variability of both groups is equal, both tests return 
approximately the same P value. In this Unit, we focus on 
the use of an independent samples t-test because this is the 
most commonly reported test; however, the use of the z-test 
is included in the further reading.

Summary statistics for parametric tests
The summary statistics that are used to describe the 
central value of each group are the mean values of the outcome 
variable. Two statistical terms that are often confused in 
describing the variation of the data values around a mean 
value are the standard deviation (SD) and the standard 
error (SE).1 A further term that is used to describe the 
dispersion of the data values is the variance.

The variance is used to describe the total variability in 
the sample. Individuals in the sample can be described in 
terms of their distance (deviation) from their mean value. 
When an outcome measurement is normally distributed, 
approximately half of the sample will have a negative 
deviation that is lower than the mean value and the other 
half will have a positive deviation that is higher than the 
mean value. Because the negative values will balance out the 
positive values, summing these deviations would result in a 
value close to zero. Therefore, to calculate the variance, the 
deviations from the mean are squared to obtain values which 
are all positive. The sum of the squared deviations is divided 
by the degrees of freedom to compute a measure of the total 
variation that is called the ‘variance’. The degrees of freedom 
are equal to the sample size minus one (n  1).

The standard deviation is a measure of how far the data 
spreads either side of the central mean value and, as such, 
is a measure of the variability in the population from which 
the sample was drawn.1 The standard deviation is actually 
the square root of the variance and therefore is in the same 
units as the data values. If the distribution is normal, approx-
imately 95% of the data values will lie within the range of 
1.96 standard deviations below to 1.96 standard deviations 
above the mean. This range is called the 95% range. For the 
data shown in Figure 6.1, the mean value is 4.6 kg with a 
standard deviation of 0.6 kg. From this we can infer that 95% 
of babies in the sample have a weight that lies in the range 
of 4.6 ± (1.96 × 0.6) or between 3.4 and 5.8 kg. This seems 
reasonable given the range of values on the x-axis in 
Figure 6.1. The spread of the data values will remain similar 

for random samples of the same population, and therefore 
the standard deviation does not change much if the sample 
size is larger or smaller.1

Glossary

Term Defi nition

Outcome 
variable

The outcome measurement in a study, that 
is the variable of interest such as the primary 
illness or disease status indicator.

Explanatory 
variable

A characteristic that is hypothesised to 
infl uence the outcome variable. In clinical 
studies the explanatory variable is often 
the group to which patients have been 
randomised. In cross-sectional and cohort 
studies, explanatory variables are often 
exposure variables.

Parametric 
statistics

Statistics used when the outcome 
measurement has a distribution that is 
approximately normal. 

Variance A squared term that describes the total 
variation in the sample. 

Standard 
deviation 
(SD)

A measure of variability that describes 
how far the data spreads on either side 
of the central mean value. The standard 
deviation is the square root of the variance 
and therefore is in the same units as the 
data values.

Standard 
error (SE)

A measure of the precision with which the 
mean value has been measured. 

The standard error has an entirely different meaning 
from the standard deviation in that it conveys the precision 
with which the mean value has been measured. The stan-
dard error is not an estimate of any quantity in the popula-
tion from which the sample was drawn, but is an estimate 
that tells us how precisely the sample mean is an estimate 
of the true population mean. As such, the mean plus or 
minus 1.96 standard errors tells us the range in which we 
expect the true population mean to lie. If the sample size 
in a study is small, we are less certain of the accuracy with 
which the true mean value has been estimated and the 
standard error is wider than if the sample size is large, and 
we are more certain of the accuracy of the estimate. Unlike the 
standard deviation, which remains relatively constant with 
sample size, the standard error is inversely related to the sam-
ple size. Using the formula for standard error that is shown in 
Unit 1, the standard error for the data shown in Figure 6.1 is 
0.6/100, or 0.06. If the sample size had been much smaller, 
at 25 babies, the standard error would be larger at 0.6/25, 
or 0.12, indicating less precision as a result of the smaller 
sample size. 
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Independent samples t-test
An independent samples t-test tells us how different two 
mean values are relative to the standard error of their differ-
ence. The P value from this test indicates whether there is a 
statistically signifi cant difference between the mean values, 
that is, the probability that the mean values have come from 
two populations with the same distribution of the outcome 
measurement. As such, the P value tells us the probability 
that a difference between the groups has arisen by chance. 

When comparing two groups, it is important to distinguish 
between clinical importance and statistical signifi cance, par-
ticularly when the P value is on the margin of signifi cance. The 
standard error that is used to compute a t value is infl uenced 
by the sample size. Thus, if the sample size is large enough, 
a small difference between mean  values will be statistically 
signifi cant. If the sample size is too small then a large differ-
ence will not be statistically signifi cant. As discussed in Unit 1, 
a type I error occurs when a statistically signifi cant difference 
between two mean values is found but no clinically important 
difference exists. A type II error occurs when no statistically 
signifi cant difference between the mean values is found but a 
clinically important difference exists. When interpreting the 
results from an independent samples t-test, it is important 
to interpret the statistical signifi cance of the P value in the 
light of whether the mean difference between the groups is 
clinically important and to remember that a type II error 
may occur – that is an important difference may not reach 
 statistical signifi cance when the sample size is small.

Assumptions
As with all statistical tests, some basic assumptions must 
be met for the results from an independent samples t-test 
to be valid. The assumptions are that each participant is 
represented in the analysis once only and that the  outcome 
measurement is normally distributed in each group. 
Although the independent samples t-test is not sensitive to 
moderate departures from a normal distribution, it is prob-
ably best not to rely on this feature.2 If the distribution of 
the outcome measurement is skewed, one option is to math-
ematically transform the measurement to a different scale, 
for example by using a logarithmic transformation so that 
the assumption of normality is reasonable.3 If a measure-
ment cannot be mathematically transformed to normality, a 
non-parametric test is preferred.

A third assumption for using an independent samples 
t-test is that the variance of the outcome measurement in 
each group should be approximately equal. When using a 
statistical package, a Levene’s test of equality of variances 
is reported as an integral part of the independent samples 
t-test, and therefore this assumption does not need to be 
considered prior to conducting the test. If the Levene’s test 
indicates that this assumption is not met, an adjustment is 
made to the calculation of the t-test statistic and its degrees 
of freedom and an adjusted P value is reported. 

The fourth assumption is that the sample size is large 
enough. The sample size that is adequate for using an inde-
pendent samples t-test is open to debate, but it is generally 
accepted that, if the other assumptions are met, there should 
be at least 30 participants in each of the study groups. If 
the assumptions of normality and equal variances are not 
properly met, then a larger sample of size of at least 50 par-
ticipants in each group will provide an unbiased t value.4

In general, if there is a large imbalance in the group 
variances, if the distribution of the outcome in either group 
signifi cantly departs from normality or if there are infl uential 
outliers in either group, that is, data points that are extreme 
and separated from the rest of the data, a non-parametric 
test should be used. The non-parametric equivalent to an 
independent samples t-test is the Mann–Whitney U test. 
This test should also be used when the sample size of one or 
both groups is small.

If the assumption of independence is violated, for 
example if a participant is included more than once in 
the analysis, such as when measurements have been taken 
from both kidneys or both eyes in the same participant, a 
paired t-test should be used. Paired t-tests, which are used to 
describe within-participant differences rather than between-
group differences, are discussed in Unit 8. A paired t-test 
may also be more appropriate in other study designs such as 
matched case-control studies, in which the case-control pairs 
are related by their selection criteria.5 

Effect size
When the outcome measurement has a continuous 
distribution, the term ‘effect size’ is used to describe the 
magnitude of the difference in mean values between the two 
study groups, relative to the size of their standard deviations. 
This is calculated as:

Effect size = (Mean
1
  Mean

2
)/SD

where Mean
1
 = mean of group 1, Mean

2
 = mean of group 2 

and SD = standard deviation. 
When the standard deviations are approximately equal, 

the standard deviation of either group can be used to cal-
culate the effect size. If one group is an experimental group 
and the other is a control group, the control group standard 
deviation is used. However, if the control group is small, its 
standard deviation may not be an accurate estimate of the 
population standard deviation. In this case, it is better to 
use the pooled standard deviation, which is calculated from 
the standard deviation of both groups. The pooled standard 
deviation is used when neither group is a control group or 
when the groups have unequal standard deviations and/or 
unequal sample sizes. The pooled standard deviation is cal-
culated as follows:

2 2
1 1 2 2

1 2

( 1) × SD + ( 1) × SD
Pooled standard deviation =

+ 2

N N

N N

- -
-
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where N
1
 and SD

1 
are the sample size and standard deviation 

of group 1, and N
2
 and SD

2 
are the sample size and standard 

deviation of group 2.
Figure 6.2 shows the mean values in two groups that are one 

standard deviation apart, that is, there is an effect size of one 
standard deviation. When considering the difference between 
two mean values, it often helps to visualise them in this way. 

Effect size can be used as a measure of the magnitude of a 
treatment or exposure effect. Calculating the effect size can 
be helpful because this allows treatment or exposure effects to 
be compared between different studies in which the standard 
deviation is different. Effect sizes estimated from a number 
of similar studies can be combined in a meta-analysis to pro-
vide an overall or average effect size for a treatment or expo-
sure. In general, an effect size of 0.2 is considered to be small, 
0.5 is considered medium and 0.8 is considered large.6

Calculating and interpreting results from an 
independent samples t-test
We can use an independent samples t-test to estimate whether 
the distribution of weight at one month of age as shown 
in Figure 6.1 is different between male and female babies. 
The results obtained from a statistics package are given in 
Table 6.1 and show that male babies have a mean weight 
of 4.70 kg, that is 0.29 kg higher than the mean weight of 
4.41 kg for female babies, and a standard deviation of 
0.52 that is slightly smaller than that of female babies which 
is 0.60.

The formulas to calculate the mean difference between 
groups, the standard error of the difference and its 95% 
confi dence interval, and the t value, are shown below:

Mean difference = Mean
1
  Mean

2

SE (mean difference) = Pooled SD ×  1/N
1
 + 1/N

2

95% confi dence interval = Mean difference ± (1.96 × SE)
t value = Mean difference/SE

In calculating a t value, the absolute value of t is used 
without regard to whether the sign is positive or negative. 
For example, the absolute value of 3 is equal to 3. 

Figure 6.2 Effect size between two continuously distributed 
variables.

Standard deviations
−3−4 −2 −1 0 1 2 3 4 5

Mean 1 Mean 2

Glossary

Term Defi nition

Outlier Data points at the extremities of the 
range or separated from the normal 
range of the data values. Data points 
more than three standard deviations 
from the mean are usually considered 
to be outliers.

t value A t value, which is calculated by 
dividing a mean value by its standard 
error, gives a number from which the 
probability of the event occurring is 
estimated from a t-distribution. 
A t-distribution is closely related to a 
normal distribution but depends on 
the number of cases in the sample. 

Independent 
samples t-test

Test to measure whether a continuous 
outcome variable with a normal 
distribution is signifi cantly different 
between two groups, e.g. between 
male and female or between an 
intervention and a control group.

Unpaired 
z-test

Test used to compare the mean 
values of two independent samples 
using a normal distribution. This test 
is only used when the sample size 
is very large or the mean and 
standard deviation of the population 
are known.

Effect size The distance between two mean 
values, described in units of their 
standard deviations, that describes 
the relative magnitude of the 
difference between two groups.

Table 6.1 Independent samples t-test statistics for male and 
female babies 

Levene’s test t-test

Gender N Mean SD F P value t value P value

Male 48 4.70 0.52 0.78 0.38 2.64 0.01
Female 52 4.41 0.60
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how, by selecting different starting points for the y-axis, it is 
possible to artifi cially change the perceived difference 
between the mean values. The size of the bars does not 
have a meaningful interpretation because the y-axis has 
been started at an arbitrary value in both plots. In general, 
mean values are better displayed using a dot plot so that the 
relative differences between the summary estimates are 
visually maintained and easily interpreted. 

In Table 6.1, the standard deviations of the groups are not 
largely different and the Levene’s test of equal variance with a 
F statistic of 0.78 and a P value of 0.38 is not signifi cant. This 
indicates that the variances in the two groups are not signifi -
cantly different from one another and that the assumption of 
equal variances for using a t-test is met. 

Using the values in Table 6.1, it can be calculated that 
the mean difference between the groups is calculated to 
be 0.29 kg, the pooled standard deviation is 0.56 and the 
standard error of the mean difference is 0.11. The t value is 
calculated by dividing the mean difference by its standard 
error, that is, 0.29/0.11 to give a t value of 2.64. When the 
variances are equal, the degrees of freedom are the sum of 
the number in each group minus the number of groups in 
this case, 48 + 52  2 or 98. The t value can be converted 
into a P value by either using a t-distribution table in a 
statistics book or by using the Excel statistics function 
‘TDIST’ which returns a P value when the t value, degrees of 
freedom and number of tails (in this case, two) is entered. 
For these data, the P value is 0.01, indicating it is very unlikely 
that the 0.29 kg weight difference between the gender groups 
has occurred by chance. 

When documenting the results of an independent 
samples t-test, the mean value and standard deviation of 
each group as shown in Table 6.1 are usually reported. The 
95% confi dence interval around the mean of each group 
could also be reported because this conveys the precision 
with which each of the mean values has been estimated. 
In addition, the mean difference between groups is an 
important statistic that has its own confi dence interval. 
A mean difference of zero would indicate that there is 
no difference between the mean values of the two groups. 
Thus, if the 95% confi dence interval around the mean 
difference encompasses the value of zero, we can infer that 
the difference between the groups is not statistically 
signifi cant.

For the data shown in Table 6.1, the mean difference 
between the groups has a standard error of 0.11, which can 
be converted into a 95% confi dence interval of 0.07–0.51 kg. 
This interval does not cross the value of zero and thus con-
fi rms that we can be 95% certain that male babies have, on 
average, a birth weight that is 0.07–0.51 kg larger than that 
of female babies. 

Presenting mean values in graphs
When presenting mean values in a fi gure, a dot plot is 
usually preferable to a bar chart, unless the y-axis begins at 
zero and the distance of the mean values from zero on the 
chart has an intuitive meaning. Figure 6.3 shows the mean 
birth weight in male and female babies as a dot plot. In this 
plot, the difference between the groups relative to their 95% 
confi dence intervals is displayed correctly. Figures 6.4 and 6.5 
shows how mean values are often presented as bar charts and 
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Figure 6.3 Mean values displayed as dot plots.
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Figure 6.4 Mean values displayed as a bar chart with the y-axis 
beginning at 4.0 kg.

Peat_Unit 6.indd   73Peat_Unit 6.indd   73 6/12/2008   2:12:36 PM6/12/2008   2:12:36 PM



74   UNIT 6  Comparing mean values

independent samples t-test. An unpaired z-test is used when 
the mean and the standard deviation of the population is 
known, or when the sample size is large and there is good 
reason to believe that the data have been drawn from a nor-
mal distribution. However, in health care research, popula-
tion values are generally not known and sample sizes are not 
generally large, and therefore an independent samples t-test 
is the most frequently used statistic.

After reading the reprint, answer the following questions.
What does the 95% confi dence interval around a mean 1 
difference between two groups actually show?
At what point in a study should you decide whether to use 2 
a one-tailed or a two-tailed signifi cance test?
In the reprint, question 4 of the quiz, what would be 3 
the null hypothesis and the alternative hypothesis for 
the data from the study by Boyd et al.? Calculate the t 
value and the P value for the between-group difference. 
What conclusions would you make from these statis-
tics? Then calculate the mean difference and its 95% 
 confi dence interval. Does this change your conclusions in 
any way? 
For the data shown in Table 3 in the reprint, use an 4 
independent samples t-test to obtain a P value and also 
calculate the mean difference and its 95% confi dence 
interval for the data as shown. Then, recalculate these 
values but change the sample size to 35 patients who 
were re-warmed by a blanket and 45 patients who were 
re-warmed by forced air. Compare the P values and 
confi dence intervals calculated using the different sample 
sizes. What would you conclude about the likelihood of a 
type I or II error?
For Table 3, as it is shown in the reprint, would it be valid 5 
to use an independent samples t-test if you were using a 
statistical package to compare the mean values from the 
two groups? If you did, what effect would this have on 
your conclusion? What other statistical test could be used 
and why?

Worked example
Set article
Rivero-Arias O, Campbell H, Gray A, Fairbank J, Frost 
H, Wilson-MacDonald J for the Spine Stabilisation Trial 
Group. Surgical stabilisation of the spine compared with a 
programme of intensive rehabilitation for the management 
of patients with chronic low back pain: cost utility analysis 
based on a randomised controlled trial. BMJ, May 2005; 330: 
1239. (See p. 85.)

The set article reports the results from a multi-centre study 
in which 349 patients were randomised to receive surgery 
(N = 176) or intensive rehabilitation (N = 173) as a treat-
ment for chronic low back pain. Outcome measurements 
were collected at 24 months following enrolment. 

M
ea

n 
w

ei
gh

t (
kg

)

0

1

3

2

4

5

Male Female

Figure 6.5 Mean values displayed as a bar chart with the y-axis 
beginning at 0 kg.

Reading and questions
Reprint
Driscoll P, Lecky F. Article 7. An introduction to hypothesis 
testing. Parametric comparison of two groups – 2. Emerg 
Med J 2001;18:214–221. (See p. 77.)

The reprint by Driscoll and Lecky (2001) shows how two 
groups can be compared using an unpaired z-test or an 

TAKE HOME LIST

For measurements with a normal distribution, • 
approximately 95% of the data points will fall within the 
range of two standard deviations above and below the 
mean value.

Because the spread of the data remains approximately the • 
same for random samples taken from a population, the 
standard deviation does not change much as the sample 
size increases.

The standard error will become smaller as the sample size • 
increases, indicating the greater precision with which the 
mean value has measured. 

The effect size is the difference between two mean values • 
described in units of their standard deviations and is 
a measure of the relative magnitude of the difference 
between two groups.

The statistical signifi cance of a between-group difference • 
is dependent on the sample size. If the sample size is 
small then a clinically important difference may not be 
statistically signifi cant.
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Table 6.2 is extracted from Table 3 in the set article: Other 
back pain-related costs to 24 months following randomi-
sation. Figures are mean costs and standard deviations in 
pounds sterling. 

Use the mean and standard deviations to calculate the 
95% ranges in Table 6.1 and answer the following questions. 

Do you think that the SD describes the distribution of the  •

data accurately? 
The authors say that skew in the cost data was modest and  •

therefore that parametric confi dence intervals were used. 
However, they do not say how the P values in the table 
were derived. Do you think that the distributions of cost 
in each group were approximately normal so that a t-test 
could be used to generate valid P values? 
Are the  • P values reported consistent with the 95% 
confi dence intervals around the mean cost differences in 
Table 3 in the set article?
Figure 1 in the set article shows mean utility levels and 

their 95% confi dence intervals at baseline and then at 6, 12 
and 24 months. By comparing the confi dence intervals what 
would you conclude about: 

the between-group differences;  •

the change in mean utility levels over the period of the  •

study.

Quick quiz

Tick the correct answer for each of the following questions.

An independent samples 1 t-test is used when:
we want to decide if a mean value is different to zero;(a) 
the people in one group are not included in the (b) 

other group;
the outcome measurement is not normally (c) 

distributed;
people have two data points because they have (d) 

returned for a follow-up study.

The results from an independent samples 2 t value tells us 
whether: 

the difference between two mean values is large (a) 
relative to the standard error;

the two mean values are 1.96 standard deviations (b) 
apart;

the group means are a good approximation of the (c) 
population means;

one mean value is outside 1.96 standard deviations of (d) 
the other mean.

When the 95% confi dence interval around the  difference 3 
between two mean values includes a zero value, this 
indicates that:

the estimate around the mean difference lacks (a) 
precision;

one of the mean values is approximately equal (b) 
to zero;

there is no evidence of a signifi cant difference between (c) 
the groups;

there is evidence that the between-group difference is (d) 
statistically signifi cant.

A non-parametric test is used in preference to an 4 
independent samples t-test when: 

the participants have not been selected (a) 
randomly;

the sample size is small;(b) 
the distribution of the measurement in the (c) 

population is not known;
there are no outliers in either group.(d) 

Critical appraisal

Work through the critical appraisal checklist to review the 
paper by Rivero-Arias et al. (2005) and decide whether the 
results and the conclusions are valid and justifi ed.

Table 6.2 Other back pain-related NHS contacts for surgery and rehabilitation

Surgery (N = 176) Rehabilitation (N = 173)

Mean cost (SD) 95% range Mean cost (SD) 95% range P value

Surgery outpatient clinics 190 (159) 122, 502 82 (119) 151, 315 <0.001

Physiotherapy outpatient clinics 286 (523) 301 (584) NS

Unplanned hospital admissions 451 (1881) 2128 (3522) <0.001

Other back pain-related hospital 
admissions

130 (910) 73 (555) NS

Other back pain-related NHS 
contact costs

1707 (2451) 3009 (4001) <0.001
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Bland JM. Deviations from the assumptions of 4. t methods. In: An 

introduction to medical statistics. Oxford: Oxford University Press, 

1996; pp 165–166.

Bland JM, Altman DG. Matching. BMJ 1994;309:1128.5. 

Cohen, J. A power primer. Psych Bull 1992;112:155–159.6. 

Critical appraisal checklist for an article that compares the mean values of two groups

Study designA. 

Are any cases included in a group more than once, for example, are any 1. 
follow-up data treated as independent data?

Are the two groups independent? Is there any matching or duplicate 2. 
measurement involved?

Are there suffi cient cases in each group to warrant using an independent 3. 
samples t-test?

Statistical methodsB. 

Is any evidence given that the outcome variable is normally distributed in 4. 
each group?

Are there likely to be any infl uential outliers that could have increased or 5. 
decreased the difference in mean values between the groups?

Is the variance of the two groups equal and, if not, has a P value for 6. 
unequal variances been reported?

ResultsC. 

Are bar charts used inappropriately for presenting mean values?7. 

Are mean values and/or the differences between groups presented with 8. 
95% confi dence intervals?

InterpretationD. 

Is the use of mean values and t values appropriate?9. 

Are any of the summary statistics biased? If yes, have any differences 10. 
between the groups been under-estimated or over-estimated?

Do any differences between groups represent type I or type II errors?11. 

References

Altman DG, Bland JM. Standard deviations and standard errors. BMJ 1. 

2005;331:903.

Altman DG, Bland JM. The normal distribution. BMJ 1995;310:298.2. 

Bland JM, Altman DG. The use of transformation when comparing 3. 

two means. BMJ 1996;312:1153.
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Objectives
Dealing with unpaired (independent) parametric data •
Discuss common mistakes using the  • t test
In covering these objectives the following terms will be 

introduced:
Unpaired z test •
Unpaired  • t test
One and two tailed tests •
In the previous article we discussed the comparison 

of paired (dependent) data.1 These result when there is a 
relation between the groups, for example investigating 
the before and after effects of a drug on the same group of 
patients. The key measurement here is the difference between 
each pair. If this comes from a population that is normally 
distributed the mean difference can be calculated along with 
the standard error of the mean (SEM). The 95% confi dence 
intervals for the true mean difference can then be derived 
along with the p value for the null hypothesis (table 1).

When there is no relation between the groups, the data are 
called “unpaired” or “independent”. A common example of 
this is the controlled trial where the effect of an intervention 
on one group is compared with a control group without the 
intervention. Here the selection of the experimental group 
does not tell you which people will be in the control group. 
They are therefore independent of one another.

It is useful to note at this stage that when you compare 
groups you are taking into account two variations. One is 
due to the difference between subjects within the same group 
and is called the intra-group variation. The other results 
from the difference between the groups and so is known as 
the inter-group variation. With paired data the difference in 
subjects is removed because each subject acts as its own con-
trol. Consequently you are simply measuring the inter-group 
variation. In contrast, when using unpaired data, both these 
variations have an effect (table 1).

Unpaired z test
We have shown previously that a systematic approach is used 
to determine if the null hypothesis is valid (box 1).1

To see how this works when dealing with unpaired data 
consider the following example. Dr Egbert Everard has been 
working for just over a year in the emergency  department 
of Deathstar General. During this time the department 
has dealt with 100 patients who have ingested a new rave 
drug “Hothead”. He suspects these people may have an 
abnormal sodium concentration on presentation—how can 
he investigate this?

1 State the null hypothesis and alternative hypothesis 
of the study
Having considered the problem, Egbert writes down the null 
hypothesis as:

“There is no signifi cant difference between the sodium 
concentration in the patient’s ingesting “Hothead” and those 
of a similar age attending the emergency department”. In 
other words they are part of the same population.

Accident and Emergency Department, Hope Hospital, Salford 
M6 8HD, UK

Correspondence to: Mr Driscoll, 
Consultant in Accident and Emergency Medicine 
(email: pdriscoll@hope.srht.nwest.nhs.uk)

Table 1 Comparison of two groups using z and t-tests

Paired test Unpaired test

Deals with the 
difference between the 
paired values

Deals with the difference 
between the means of both 
groups

Relies on the population 
of this difference being 
normally distributed

Relies on the population of 
this difference being normally 
distributed

It is not affected by the 
distribution of the before 
and after samples

Is affected by the inter and 
intra group distribution

Box 1 System for statistical comparison of two groups
State the null hypothesis and the alternative hypothesis  •
of the study
Select the level of signifi cance •
Establish the critical values •
Select the groups and calculate their means and  •
standard errors of the mean (SEM)

Choose and calculate the test statistic •
Compare the calculated test statistic with the critical  •
values
Express the chances of obtaining results at least this  •
extreme if the null hypothesis is true

  or estimated standard error of the mean (ESEM) if using 
a sample size < 100.2
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This can be summarised to:

mean “Hothead” [Na+] = mean control [Na+]

The alternative hypothesis is the logical opposite of this, 
that is:

“There is a signifi cant difference between the sodium 
concentration in the patient’s ingesting “Hothead” and those 
of a similar age attending the emergency department”.

This can be summarised to:

mean “Hothead” [Na+]  mean control [Na+]

2 Select the level of signifi cance
If the null hypothesis is correct, and the two groups are part of 
the same population, then their mean sodium concentrations 
should be the same. Therefore the difference between them 
would be zero. However, there is bound to be some small 
variation simply due to chance. Therefore how big a 
difference are we going to allow before we reject the idea that 
the two groups are all part of the same population?

In answering this question we rely on an interesting 
mathematical fact that the difference of the means represents 
a population that has a normal distribution. In other words, 
if you repeated the experiment many times, and plotted all 
the mean differences, the scatter diagram would take the form 
of a normal distribution. If the null hypothesis was correct 
this distribution would have a mean of zero. The standard 
deviation of this distribution is known as the standard 
error of the differences between the means (SE Diff). This is 
equivalent to the standard error of the mean (SEM) that has 
been discussed in previous articles (fi g 1A).1–3

When comparing large groups of independent data we can 
determine the size of different areas under the distribution 
curve by using the z statistic:

z = [µ1– µ2]/SE Diff

Where:
µ1 = mean of group 1
µ2 = mean of group 2

You will note that this equation is slightly different from 
the one used to compare paired data.1 The numerator 
has changed to refl ect the fact that we are interested in the 
difference between the means of the two groups rather than 
the mean difference between paired readings. Furthermore, 
the standard error of the difference between the means 
(SE Diff) has replaced the SEM to take account of the errors 
in estimating the means in each group:

SE Diff = [(s2
1
/n

1
) + (s2

2
/n

2
)]

Where:
s

1
 = estimation of the population’s standard deviation 

derived from group 1 with n
1
 subjects

s
2
 = estimation of the population’s standard deviation 

derived from group 2 with n
2
 subjects

As discussed in article 4, s is used because in clinical 
practice we usually do not know the value of a population’s 
standard deviation (). However, provided the sample size 
is large enough (that is, greater than or equal to 100) the 
z statistic can still be derived using s as an estimation of 
the population’s standard deviation.3

By convention, the outer 0.025 probabilities (that is, the 
tips of the two tails representing 2.5% of the area under the 
curve) are considered to be suffi ciently away from the popu-
lation mean as to represent values that cannot be simply 
attributed to chance variation (fi g 1B). Consequently, if the 
sample mean is found to lie in either of these two tails then 
the null hypothesis is rejected. Conversely, if the sample mean 
lies within these two extremes then the null hypothesis will be 
accepted (fi g 1B].

Following convention, Egbert picks a signifi cance level of 
0.05 for his study. He now needs to determine the sodium 
concentration that demarcates these two tails.

Figure 1 Normal distribution of the difference between the means 
of the two groups. (A) Shows the hypothetical population mean of 
this difference (central vertical line). The horizontal access is divided 
up into standard errors of the difference of the mean (SE Diff). 
(B) Displays the same data as a standard normal distribution and 
replaces the SE Diff with z scores. The areas of acceptance (0.95 of 
the total area under the curve) and rejection (0.05 of the total area 
under the curve) of the null hypothesis are demonstrated. The area of 
rejection is split into two tails of the distribution curve.
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3 Establish the critical values
Using the z table Egbert fi nds that the critical value (z

CRIT
) 

demarcating the middle 95% of the distribution curve is 
z = +/ 1.96 (fi g 1B). In other words a z value of +/ 1.96 
separates the middle 95% area of acceptance of the null 
hypothesis from two, 2.5% areas of rejection.

With the null and alternative hypotheses defi ned, and the 
critical values established (z

CRIT
), the patients for the study 

can now be selected. The z statistic derived from the sample 
(z

CALC
) can then be determined.

4 Select the groups and calculate their means
Egbert gathered the presenting sodium concentrations 
from a sample of 100 patients who have taken “Hothead”. 
The mean (µ1) and estimation of the population’s standard 
deviation (s

1
) were calculated and found to be 131 mmol/l 

and 10 mmol/l respectively.
Egbert had arranged with Ivor Whitecoat, senior laboratory 

technician at Deathstar General, to measure the sodium con-
centration in a control group of patients who had not taken 
“Hothead”.  Ivor tells him that the mean sodium concentration 
in a 100 patients of a similar age presenting to the emergency 
department (µ2) is 134 mmol/l with as an s of 7 mmol/l (s

2
).

5 Choose and calculates the test statistic
As explained before, the z statistic is equal to:

z = [1 2]/SE Diff

Where:
SE diff = [(102/100) + (72/100)] = [1 + 0.49] = 1.2 

(rounded down)
An interesting feature can be noted from the equation 

above. Supposed Ivor Whitecoat used several thousand 
patients to work out a mean. In this case s

2
2 /n

2
 would become 

so small as to be negligible. Consequently the SE Diff would 
simply be equal to the ESEM of Egbert’s group.

The difference between the two means in this study is:

[1 2] = 131  134 = 3

Therefore:
z = 3/1.2 = 2.5

7 Express the chances that the null hypothesis is in 
keeping with the data
The p value is the probability of getting a difference equal to 
or greater than that found in the experiment (that is, –3), if 
the null hypothesis was correct.4 As the z value can be nega-
tive or positive, there are two ways of getting a value with a 
magnitude of 2.5. Consequently the p value is represented by 
the area demarcated by –2.5 to the tip of the left tail plus the 
area demarcated by +2.5 to the tip of the right tail (fi g 2).

From the tables of z statistics, it can be seen that the size 
of the tail from +2.5 to the right tip is 0.5–0.4938 = 0.0062. 
The equivalent value in the other half of the distribution 
curve is the same. The p value is therefore doubled to give 
a total value of 0.0124. Consequently there is a 1.2% chance 
that a difference with a magnitude of 3, or larger, could 
have resulted if the null hypothesis was true.

What is the estimated range for the true difference 
between the means?
In view of the importance of confi dence intervals, Egbert 
also wants to determine the 95% CI for the difference. From 
the previous explanation, Egbert knows that 95% of all 
possible values of the difference between the means will lie 
within a range 1.96 SE Diff below his experimental difference 
to 1.96 SE Diff above it:

95% confi dence intervals = mean ± [1.96 × SE Diff]

As described above, the difference between the means 
is 131  134 = 3 mmol/l. Therefore the 95% confi dence 
intervals of the difference between the two groups are:

1.96 × 1.2 below –3 mmol/l = –5.4 (rounded up) mmol/l
to
1.96 × 1.2 above –3 mmol/l = –0.6 (rounded down) mmol/l

Key point 1
When comparing a sample with a large group you only 
need to know the ESEM of the sample.

Figure 2 Standard normal distribution curve demonstrating two 
ways of getting a difference with a magnitude of 2.5. 0.0062 of the 
area under the curve lies between –2.5 to the tip of the left tail. 
A similar area lies between +2.5 to the tip of the right tail.
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6 Compare the calculated test statistic with the 
critical values
The calculated value of –2.5 lies beyond the larger critical 
value of –1.96. It therefore falls outside the area of accepting 
the null hypothesis.
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As this range does not include zero, Egbert concludes that 
the data are not compatible with the null hypothesis being 
correct. The range is on the side of there being a lower sodium 
concentration in the patients taking “Hothead” but the dif-
ferences are small. Therefore, rather than simply presenting a 
p value, it would be better if Egbert uses the 95% confi dence 
intervals in discussing the clinical relevance of these data.

In summary, Egbert concludes that he can confi dently 
reject the null hypothesis. Difference between the means of 
the two groups = –3 mmol/l (95% confi dence intervals –5.4 
to –0.6 mmol/l); p = 0.012.

Unpaired t test
When the sample size is less than 100, the effect of intra-
group variation becomes greater. In these cases the normal 
distribution has to be replaced by the t distribution. Unlike 
the normal distribution, the shape of the t distribution is 

dependent upon the size of the group (fi g 3). It is always 
symmetrical but with small sample sizes the curve is fl atter 
and has longer “tails”. However, as the sample size increases, 
the curve becomes normally distributed.

Irrespective of which t distribution is chosen, the same prin-
ciple applies regarding set areas under the curve representing 
particular probabilities. Consequently the p value for the null 
hypothesis is derived from the test statistic. However, tables of 
the t distribution are used rather than the z distribution ones. 
Likewise, the 95% confi dence intervals for the true difference 
between the means are the experimental mean difference, ± 
the appropriate t value, multiplied by the SE Diff.

To see how this works, consider the following example. 
Egbert by chance has a night off and discusses his fi ndings 
over a romantic meal with Endora Lonely, an emergency 
physician at St Heartsinc. She is surprised by the topic of 
conversation but does wonder if the same applies to patients 
having taken an analogue of “Hothead” called “Brainboil”. 
She tackles this using the previously described systematic 
approach but this time considers using an unpaired t test as 
her study and control groups have only 16 patients in each.

1 State the null hypothesis and the alternative 
hypothesis of the study
These remain unchanged from those used in the larger study. 
Consequently:

“There is no signifi cant difference between the sodium 
concentration in the patient’s ingesting “Brainboil” and those 
of a similar age attending the emergency department”. In 
other words they are part of the same population.

This can be summarised to:

mean “Brainboil” [Na+] = mean control [Na+]

The alternative hypothesis is the logical opposite of this, 
that is:

“There is a signifi cant difference between the sodium 
concentration in the patient’s ingesting “Brainboil” and those 
of a similar age attending the emergency department”.

This can be summarised to:

mean “Brainboil” [Na+]  mean control [Na+]

2 Select the level of signifi cance
Following convention, Endora picks a signifi cance level of 
0.05 for her study.

3 Establish the critical values
This is carried out in the same way as comparing larger 
groups but this time the t statistic is used because the group 
size is less than 100. The t table enables you to calculate the 
probability of lying within the middle 95% of the distribution 
where the null hypothesis is valid. The tables also take into 
account the changes in t with variation in sample size.

For mathematical reasons rather than use the absolute 
number in the group you use the degrees of freedom. In this 
type of comparison it is equal to the sum of the number in 
each group minus 1 (that is, (n

1
 – 1) + (n

2
 – 1)).

Figure 3 t distribution with 10 degrees of freedom and a standard 
normal distribution. As the degrees of freedom increase the t 
distribution becomes more like a normal distribution.
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Figure 4 t distribution curve with 30 degrees of freedom 
demonstrating two tails. These are demarcated by t

(crit)
 of –2.042 and 

2.042. The area between these values represents those values that are 
in keeping with the null hypothesis and amount to 0.95 of the area 
under the curve.
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Consequently the degrees of freedom is [16 – 1] + 
[16 – 1] = 30.

Using the t distribution tables, Endora fi nds that the t value 
for a probability of 0.05 with 30 degrees of freedom is 2.042. 
This is known as the t

crit
 value. It means that for this study, 

a t value of ±2.042 divides the middle 95% of the popula-
tion accepting the null hypothesis from the two, 2.5% tails of 
rejection (fi g 4).

The t statistic from the study (t
calc

) can now be determined.

4 Select the groups and calculate their means
After carrying out her study with “Brainboil” she fi nds the 
mean presenting sodium concentrations to be 130 mmol/l 
(s = 10 mmol/l). Dr Rooba Tube tells her the mean sodium 
concentration in a control group of patients at St Heartsinc 
is 135 mmol/l (s = 10).

5 Choose and calculate the test statistic
Unpaired t test
This test requires the data to have two properties:

(1) The two groups need to come from populations with 
normal distributions.

It is sometimes possible to determine if the distribution 
is skewed simply by checking the raw data or looking at a 
distribution curve. A more sophisticated way is to use a com-
puter to develop a “normal plot” of the data. This programme 
manipulates normally distributed data so that they form a 
straight line. The closer the data comply with this line, the 
closer they are to being normally distributed. Altman gives 
a good description for those who are interested to getting 
further information about this type of manipulation.5 It is 
possible to also prove the same thing mathematically using 
various probability tests. However, these are of little addi-
tional benefi t when populations are less than 30 and the 
normal probability plot gives a reasonably straight line.

(2) The groups should be from populations with the same 
standard deviation.

It is not possible to know the standard deviations of 
the populations but an estimation comes from using the s 
value calculated from each group. The closer these values are, 
the more likely they have similar standard deviations. As with 
distributions, it is possible to formally assess the difference in 
group variance by carrying out an F test (see appendix).

Endora checks her datasets for both groups and is satisfi ed 
that these pre-conditions are met. She therefore proceeds with 
the analysis.

where:
1 = the mean for group 1
2 = the mean for group 2

When using the t test for comparing unpaired means the 
SE diff is derived from the following formula:

SE diff = [(s2 / n
1
) + (s2 / n

2
)]

Where:
n

1
 and n

2
 are the number of subjects in the two groups.

s represents the pooled variance of the two groups:

s2 = [(n
1
  1)s 2

1
 + (n

2
  1)s2

2
]/[n

1
 + n

2
  2]

From the data Endora calculates:

s2 = [(16  1) 100 + (16  1) 100]/30 = [3000]/30 = 100

Therefore:

SE diff = [(100/16) + (100/16)] = 12.5 = 3.5

Therefore:

t = [130  135]/3.5 = 1.43

6 Compare the calculated test statistic with the 
critical values
The calculated value of –1.43 lies inside the area of accepting 
the null hypothesis (that is, a t value of ± 2.042).

7 Express the chances that the null hypothesis is in 
keeping with the data
As the t value can be negative or positive, there are two ways 
of getting a difference with a magnitude of 1.43. Consequently 
the p value is represented by the area demarcated by –1.43 to 
the tip of the left tail plus the area demarcated by +1.43 to the 
tip of the right tail.

To determine this p value, Endora needs to consult the 
t distribution table using the appropriate degrees of freedom 
(table 2). In this case the degrees of freedom equals two less 
than the total number of subjects in both groups (that is, 30). 
The table indicates that the size of these two tails is greater 

Key points 2 Requirements for unpaired t tests
The groups need to have normal distributions •
The groups need to have similar standard deviations •

Table 2 Extract of the table of the t-statistic values. The fi rst 
column lists the degrees of freedom (df). The headings of the 
other columns give probabilities for t to lie within the two tails 
of the distribution.

df 0.1 0.05 0.01 0.001

1 6.314 12.706 63.657 636.619
5 2.015 2.571 4.032 6.869
10 1.812 2.228 3.169 4.587
15 1.753 2.131 2.947 4.073
20 1.725 2.086 2.845 3.850
30 1.697 2.042 2.750 3.646
43 1.681 2.017 2.695 3.532

Calculate the t statistic
The t statistic for comparing two unpaired groups is:

t = [1  2] / SE Diff
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than 0.1. Consequently there is over a 10% chance that a 
difference of 5 mmol/l, or larger could have resulted if the 
null hypothesis was true.

The null hypothesis is therefore accepted and Endora can 
conclude that the sodium concentrations in patients taking 
“Brainboil” are not signifi cantly different from the general 
population.

What is the estimated range for the true 
difference between the means?
Similar to Egbert, Endora would also like to know the 95% 
confi dence intervals for the difference. The SE Diff is used in 
the usual way to determine this:

95% CI = difference between the means ± [t
o 
× SE Diff]

Where t
o
 is the t statistic appropriate for the required CI for 

the true difference between the means.
To fi nd the t value representing the middle 95% of the 

distribution curve, Endora needs to look down the column 
representing the outer 5% (0.05 probability) of the curve 
because this identifi es the extreme point of the middle 
section. The t value in the column representing p = 0.05 at 
30 degree of freedom is 2.042. This is the number of SE Diff 
above and below the mean that cover the middle 95% of the 
distribution curve.

Therefore:
95% CI = –5 ± [2.042 × 3.5] = –12 to 2 mmol/l (to the 

nearest whole numbers)
As this includes zero, the null hypothesis is valid at the 5% 

level. The confi dence intervals are wide indicating that the 
study lacks precision, possibly due to the small sample size.1

Common mistakes made in using the z and 
t test
One and two tailed test
When using the null hypothesis in comparing two groups, 
you are determining what is the probability that they are from 
the same population. p Values of less than 0.05 are usually 
taken as the point where the null hypothesis can be rejected. 
However, this result does not tell you how they are different. 
Indeed when you set up your initial study you commonly do 
not know which group will produce the biggest result.

To demonstrate this consider a trial comparing the anal-
gesic effect of a new non-steroidal anti-infl ammatory drug 
(NSAID) with ibrufen. Before carrying out this trial you may 
hope that the new drug is better than the old one but you 
cannot be sure—it could be worse. Your study, and statistical 
analysis, should therefore be able to detect three possibilities:

The new NSAID is no different then ibrufen (that is,  •
supporting the null hypothesis)
The new NSAID is a better then ibrufen (that is, rejects the  •
null hypothesis)
The new NSAID is worse then ibrufen (that is, rejects the  •
null hypothesis)
The latter two displacements are referred to as the “tails” or 

“sides”. Consequently the tests measuring the probability of 

the null hypothesis being valid in one or both situations are 
called “one” and “two” tailed (sided) tests respectively.

When using a “one tailed test” there is only one area of 
rejection on the random sampling distribution of the means. 
Consequently the area of rejection is concentrated on one of 
the tails. This reduces the critical value for t and so makes the 
p value smaller and more impressive for any given difference 
between means.

For example, if Endora used a one tail test for a t statistic 
of –1.43 she would fi nd it to lie in an area of rejection of 
the null hypothesis (p < 0.05, shaded area). This is because 
the t

crit
 for this degree of freedom is –1.31. In contrast, as we 

have seen, using a two tailed test leads to acceptance of the 
null hypothesis (p > 0.05, checkered area) (fi g 5).

You may therefore be tempted to use a one tailed test in 
an analysis. Beware though; it is rare that the direction of 
displacement can be predicted before the study. Furthermore, 
in comparison to the standard treatment a worse result by 
the new treatment is also clinically important. Consequently 
two tailed tests should be routinely used when comparing two 
groups. If a decision is made to carry out a one tailed test then 
the rationale must be clearly described. An example of such a 
case is in public health work when you want to determine if a 
product does not fall below a particular standard (for exam-
ple, water purity). Here you are not concerned with how pure 
the water is, just as long as it is better than a preset level.

Key points 3
The decision to use a one tailed test must depend  •
upon the nature of the hypothesis being tested and 
should therefore be decided upon before the data are 
collected.
As a rule of thumb, when comparing two groups  •
always use a two tailed test for the null hypothesis.
The concept of one tailed and two tailed tests does  •
not apply when more than two groups are being 
compared.

Using a computer without considering the data and 
the question being asked
Obviously using computer software can greatly help you in 
working out the long calculations described above. This leads 
to the temptation of doing the analysis on your own and not 
seeking statistical help when necessary. However, be aware in 
doing this that you make sure the appropriate test is carried 
out so that the correct calculations and distribution tables are 
used. Applying the wrong test will still produce an answer, but 
it will be meaningless!

Assumptions of normality and similar variance
The t test is able to deal with all but major deviations from 
normality or uniform variance between the groups. The main 
problems occur when dealing with small data with a skewed 
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distribution. In these cases the t statistic does not comply 
with the t distribution curve. A possible solution in these 
cases is to see if transforming the data can make them have 
a normal distribution and uniform variance.6 Data that still 
fail to be achieve these prerequisites cannot be analysed using 
the t test. Instead a non-parametric method will have to 
be used.

Multiple comparisons
This article has concentrated on comparing two groups. In 
medical research however we may be faced with having to 
compare three or more groups. If this problem is tackled 
using two group comparisons for every possible pair of com-
binations then we run the risk of fi nding some “signifi cant” 
differences simply by chance. This probability gets bigger as 
the number of pairs increase. Therefore for multiple compari-
sons, t tests should not be used. Instead a different test, known 
as an analysis of variance, is required.

Summary
When carrying out medical studies we often have to compare 
two unpaired (independent) groups. This is best carried out 
using a systematic approach in which the null hypothesis, the 
levels of signifi cance and the critical levels are decided upon 
before the experiment is started. Once the data have been col-
lected the appropriate statistic test is chosen and calculated. 
The likelihood of the null hypothesis being valid can then be 
determined along with the confi dence intervals for the differ-
ence between the means of the two groups.

When comparing large samples (a 100 or greater), the z sta-
tistic can be used. However, with smaller groups the assump-
tions made in its calculation are no longer valid. In these 

circumstances the t statistic should be calculated, provided 
the data are normally distributed and the two groups have 
similar standard deviations.

Quiz
Why are the confi dence intervals for unpaired comparisons 1 
usually greater than the paired variety?
What are the requirements of the data if an unpaired 2 t test 
is to be carried out?
Allison 3 et al. carried out an experiment to compare the 
capillary leakage in trauma victims resuscitated with either 
hydroxyethyl starch (n = 24) or gelatine (n = 21).7 State 
the null hypothesis and alternative hypothesis of the study? 
Assuming a level of signifi cance of 0.05, what would be the 
critical values (t

crit
) of the study if an unpaired t test was 

carried out?
The following question is adapted from Boyd 4 et al. 
study comparing two activated charcoal preparations.8 
They found the mean (s) amount of charcoal drunk was 
26.5 (13.3) g for Carbomix and 19.5 (13.7) g for Actidose-
Aqua. The sample size for the Carbomix group was 
47 and 50 for Actidose-Aqua. Assuming the prerequisites 
for carrying out an unpaired, two tailed t test are valid, 
calculate the t statistic.
One for you to try on your own. Steele 5 et al. carried out 
a study comparing two types of rewarming of hypother-
mic patients.9 Part of the data are adapted and shown in 
table 3.
Carry out an unpaired, two tailed t test comparing these 

datasets in the two groups. Is there a signifi cant difference 
between the groups for the two variables?

Answers
When using paired data the confi dence interval is 1 
smaller because you have removed the variability between 
the subjects and are solely comparing the inter-groups 
difference.
The groups need to have normal distributions and similar 2 
standard deviations.
The null hypothesis is:3 
“There is no signifi cant difference in the capillary leakage 

of trauma victims resuscitated with hydroxyethyl starch or 
gelatine.

Figure 5 t distribution curve with 30 degrees of freedom 
demonstrating one and two areas of rejection. A t statistic to be 
–1.43 lies in an area of acceptance of the null hypothesis using the 
two tailed test [t

(crit)
 = –2.042] or rejection using the one tailed test 

[t
(crit)

 = –1.31].

F
re

qu
en

cy

tcrit

–2.042

tcrit

–1.31

tcrit

+2.042

Area of 
rejection

(0.5% of area
under the curve)

0

t Score

Table 3 Comparison of age and admission temperatures in 
two groups of patients selected for Steele et al’s study9

Characteristic
Blanket rewarming 
(7 patients)

Forced-air rewarming 
(9 patients)

Mean age (s) 54 yr. (14 yr.) 58 yr. (19 yr.)

Mean admission 
temperature (s)

29.8°C (1.5°C) 28.8°C (2.5°C)
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The alternative hypothesis is:
“There is a signifi cant difference in the capillary leakage 

of trauma victims resuscitated with hydroxyethyl starch or 
gelatine.

To determine the critical value the degrees of freedom need 
to be calculated fi rst. In this study this is equal to [24  1] + 
[21  1] = 43.

Using the t distribution tables, the t
crit

 value for a prob-
ability of 0.05 with 43 degrees of freedom is ±2.017 if a two 
tailed test is being used.

The 4 t statistic for comparing two unpaired groups is:

t = [1  2] / SE Diff

where:
1 = the mean for Carbomix
2 = the mean for Actidose-Aqua
SE diff = [s2 / n

1
 + s2 / n

2
]

and:

s2 = [(n
1
  1)s 2

1
 + (n

2
  1)s2

2
]/[n

1
 + n

2
  2]

From the data of Boyd et al.:

s2 = [(46  176.89) + (49  187.69)]/95 = 182.46

Therefore:

SE diff = [182.46/47 + 182.46/50] = 2.74

Therefore:

t = [26.5  19.5]/2.74 = 2.6 (rounded up)

The authors would like to thank Jim Wardrope and Iram 
Butt for their invaluable suggestions.

Appendix
The F test is the ratio of the larger variance/smaller variance. The 
resulting F value is then used to determine the probability that the two 
variances are from the same population (that is, that the null hypoth-
esis is correct). This is done by reading the F tables using the F value 
and the appropriate degrees of freedom. The latter is equal to the sum 
of (n

1
  1) and (n

2
  1) where n

1
 and n

2
 are the number in both groups. 

If the null hypothesis is not consistent with the data (that is, the “F ” 
statistic is signifi cant), the t test should not be used.
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Introduction
Chronic low back pain, defi ned as pain lasting for more 
than three months, is common and places a major economic 
burden on individuals, the health care system, and society 

as a whole. Direct costs associated with the disability were 
estimated to be around £1.6bn in the United Kingdom in 
1998,1 and the condition is estimated to be responsible for 
close to 120 million UK work days lost per year.2

Abstract
Objective To determine whether, from a health provider and patient perspective, surgical stabilisation of the spine is cost 
effective when compared with an intensive programme of rehabilitation in patients with chronic low back pain.
Design Economic evaluation alongside a pragmatic randomised controlled trial.
Setting Secondary care.
Participants 349 patients randomised to surgery (n = 176) or to an intensive rehabilitation programme (n = 173) from 
15 centres across the United Kingdom between June 1996 and February 2002.
Main outcome measures Costs related to back pain and incurred by the NHS and patients up to 24 months after 
randomisation. Return to paid employment and total hours worked. Patient utility as estimated by using the EuroQol 
EQ-5D questionnaire at several time points and used to calculate quality adjusted life years (QALYs). Cost effectiveness was 
expressed as an incremental cost per QALY.
Results At two years, 38 patients randomised to rehabilitation had received rehabilitation and surgery whereas just seven 
surgery patients had received both treatments. The mean total cost per patient was estimated to be £7830 (SD £5202) 
in the surgery group and £4526 (SD £4155) in the intensive rehabilitation arm, a signifi cant difference of £3304 (95% 
confi dence interval £2317 to £4291). Mean QALYs over the trial period were 1.004 (SD 0.405) in the surgery group and 0.936 
(SD 0.431) in the intensive rehabilitation group, giving a non-signifi cant difference of 0.068 (0.020 to 0.156). The 
incremental cost effectiveness ratio was estimated to be £48 588 per QALY gained ( £279 883 to £372 406).
Conclusion Two year follow-up data show that surgical stabilisation of the spine may not be a cost effective use of 
scarce health care resources. However, sensitivity analyses show that this could change—for example, if the proportion of 
rehabilitation patients requiring subsequent surgery continues to increase.
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The optimal treatment strategy for patients with chronic 
low back pain in whom conservative therapy has failed 
remains uncertain. For three trials, the results of randomised 
comparisons between surgical and conservative  management 
techniques have been published.3–5 Evidence from these 
trials shows that surgery may have some clinical benefi t, 
but it is not clear whether intensive rehabilitation in 
conjunction with cognitive educational programmes can 
 generate similar benefi ts for patients. Results from the fi rst 
UK based trial, the spine stabilisation trial, show a signifi cant 
difference in the Oswestry disability index at two years in 
patients randomised to spinal fusion surgery compared with 
intensive rehabilitation, which is arguably of clinical 
 importance.6 This statistical difference between treatment 
groups in only one of the two primary outcome measures 
was marginal and only just reached the predefi ned minimal 
clinical difference. The potential risk and additional cost of 
surgery also need to be considered. No clear evidence emerged 
that primary fusion was any more benefi cial than intensive 
rehabilitation. We report an economic evaluation conducted 
prospectively alongside the UK spine stabilisation trial. We 
employ a cost utility framework to determine whether any 
net health gain from using surgery would be suffi cient to 
justify a likely increase in the costs of treatment. The chosen 
form of analysis will facilitate comparisons between the cost 
effectiveness of surgery and that of other health care 
interventions competing for health care resources.

Methods
Full details of the randomised controlled trial are published 
in parallel with this paper.6 Briefl y, the trial was powered to 
detect a four point difference on the Oswestry disability index 
(a questionnaire designed to assess limitations of  various 
activities of daily living7, 8) between surgery and intensive 
rehabilitation at 24 months. We recruited 349 patients who 
met trial eligibility criteria from 15 centres around the UK 
between June 1996 and February 2002. Of these patients, 176 
were randomised to spinal fusion surgery and 173 to intensive 
rehabilitation.

For surgery patients, the local operating surgeon decided 
the type of spinal stabilisation used. Rehabilitation patients 
attended a paced exercise and education programme based 
on principles of cognitive behaviour therapy totalling about 
75 hours. We followed patients and collected back pain 
related NHS data and data on use of resources by patients to 
24 months after randomisation. Patients who considered that 
their allocated treatment for chronic low back pain had failed 
could have further treatment including surgery. At baseline, 
six, 12, and 24 months, patients completed the EuroQol 
EQ-5D questionnaire, a generic health outcome  instrument 
used to estimate utility scores9 and quality adjusted life 
years (QALYs).

Resource use
Patient specifi c data on the use of NHS resources included 
initial treatments, other back pain related hospital  inpatient 

and outpatient visits, primary care contacts, and prescribed 
items of medication. We also collected data on over the 
counter medications purchased and visits made to  private 
practitioners. The number of centres participating in 
the trial and constraints on resources precluded the collec-
tion of centre specifi c unit costs. Unless otherwise indicated, 
we used national average unit costs. All costs calculated are 
expressed in 2002–3 pounds sterling, infl ated to this base year 
where appropriate.10

Spinal fusion surgery
A “micro” approach to the costing of surgery used patient 
specifi c data itemised by use of resources. We costed 
duration spent by each patient in the operating theatre to 
allow for the time of staff involved and use of the theatre.10, 11 
We used unit costs obtained from the lead investigating 
centre to value types and numbers of surgical implants and 
intraoperative spinal x rays.

We calculated costs for anaesthetic agents and blood prod-
ucts administered during each patient’s surgery.12 We assumed 
that the costs of any surgical complications were refl ected in 
the time spent by the patient in theatre. Finally, we costed 
each patient’s surgery related inpatient stay in hospital.13

Intensive rehabilitation
For each patient, we collected information on the number 
of half day rehabilitation sessions attended and applied staff 
costs per session.10 Patients had one hydrotherapy session 
per day, valued by using a unit cost from the lead investigating 
centre. We costed exercise equipment and use of the hospital 
gym and a meeting room, by adding 15% (the overhead rate 
employed by the lead investigating centre) to staff, hydro-
therapy, and equipment costs. Finally, we costed overnight 
accommodation at either a private bed and breakfast (paid for 
by the NHS) or on a hospital ward.14

Other back pain related NHS contacts
Patients reported attendances at hospital outpatient clinics 
for spinal surgery, physiotherapy, and other back pain related 
care at six, 12, and 24 months, which we then costed.10, 13, 15, 16 
We used the mean cost of the initial fusion procedures 
(calculated as described above) to cost hospital  admissions 
for unplanned spinal fusion surgeries. Admissions for 
investigations included the cost of the evaluative procedure 
(provided by the lead investigating centre) plus overnight 
hotel costs on a general medical ward.14 We costed visits to and 
home visits from general practitioners and practice nurses.10 
We used the average cost of a rehabilitation programme 
(calculated as described above) to cost any additional inten-
sive rehabilitation.

Patients’ costs
Patients reported contacts with private complementary 
practitioners, for which we obtained costs from relevant 
national organisations. Patients also documented items 
of medication prescribed, and the cost of over the counter 
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medication purchased for back pain (see bmj.com for more 
details of costing methods).

Paid employment
Patients reported their employment status, occupation, 
and hours worked at baseline, six, 12, and 24 months. We 
calculated and costed total hours worked by each patient.17

Health related quality of life and quality adjusted 
life years
We used the EuroQol EQ-5D social tariff, estimated from 
a representative sample of the UK population, to convert 
patients’ responses to the EuroQol EQ-5D questionnaire at 
baseline, six, 12, and 24 months into single utility levels.18 We 
then constructed patient specifi c utility profi les, assuming 
a straight line relation between each of the patient’s utility 
levels. We calculated the number of QALYs experienced by 
each patient from baseline to 24 months as the area beneath 
this profi le.

Discounting
We discounted costs and effects at an annual rate of 3.5%.19

Statistical analysis
A small amount of trial data (12% of follow-up resource 
use items, 10% of utility scores, and 14% of work status 
data) were missing between baseline and 24 months. We used 
multiple imputation,20 which replaces each missing value 
with a set of m plausible values, to generate three replacement 
values (m = 3) for each of the missing cells in these  datasets, 
using multiple linear regression models containing the 
covariates intervention group, age, and sex. Arithmetic means 
presented for resource use, costs, and QALYs in each trial 
arm are an average of the means from the three datasets 
created. Associated standard deviations include a variance 
correction factor to account for variability as a result of the 
imputation process.

Arithmetic means and 95% confi dence intervals are 
presented when making cost and QALY comparisons between 
the two arms of the trial. Skewness in cost data was modest, 
and we therefore report conventional parametric confi dence 
intervals.

We carried out incremental analysis, with the mean cost 
difference between surgery and rehabilitation divided by 
the mean QALY difference to give the incremental cost 
effectiveness ratio (ICER). The non-parametric percentile 
method21 for calculating the confi dence interval around this 
ratio used 1000 bootstrap estimates of the mean cost and 
QALY differences. We used the cost effectiveness acceptability 
curve to show the probability that surgery is cost effective at 
two years for different values of the NHS’s willingness to pay 
for an additional QALY.22

Results
Baseline patient characteristics are summarised in table 1 and 
reported in detail in the companion paper.6

Resource use and costs: initial interventions
Surgery—Spinal stabilisation was carried out for 139/176 
(79%) patients randomised to surgery. Procedures were 
divided into three different groups: posterolateral fusion 
(n = 57), 360° fusion (n = 57), and Graf stabilisation (n = 25). 
Table 2 presents data on use of surgical resources and cost, 
averaged across all 139 patients who had surgery. The mean 
total cost of a spinal operation was estimated at £7610 
(SD £2643). Zero surgery costs were assigned to the 37 patients 
who did not have spinal fusion and an average treatment cost 
of £6011 (SD £3896) calculated across all surgery patients.

Intensive rehabilitation—151/173 (87%) of the patients 
randomised to intensive rehabilitation attended some 
proportion of their programme. Table 2 shows a breakdown 
of the mean total cost of intensive rehabilitation among the 
151 patients who attended rehabilitation. The total cost was 
estimated to be £1615 (SD £644). Including zero rehabilita-
tion programme costs for the 22 patients who did not attend, 
averaging across all 173 patients generated a cost estimate of 
£1410 (SD £808).

Intensive rehabilitation was substantially less costly than 
surgery (cost difference £4601, 95% confi dence interval 
£4013 to £5189, P < 0.001).

Other back pain related NHS costs
Forty eight patients randomised to rehabilitation underwent 
surgical stabilisation of the spine—10 instead of rehabilita-
tion, 38 in addition to rehabilitation. Table 3 shows that these 
unplanned surgery costs averaged £2128 per patient across the 
rehabilitation group. This was greater than the corresponding 
cost of £451 in the surgery group, which was primarily attrib-
utable to 11 patients who required spinal re-operations.

Fourteen surgery patients underwent unplanned intensive 
rehabilitation (seven instead of surgery, seven as well as sur-
gery). These costs amounted to £162 per patient. The overall 
mean cost per patient of follow-up back pain related NHS 
contacts was £1302 lower in the surgery group (95% confi -
dence interval £1999 to £605, P < 0.001).

Table 1 Patients’ demographics at baseline. Values are 
numbers (percentages) of patients unless otherwise indicated

Characteristic Surgery 
group (n = 176)

Rehabilitation 
group (n = 173)

Male 79 (44.9) 93 (53.8)
Female 97 (55.1) 80 (46.2)
Age:

 <30 years 24 (13.6) 20 (11.6)
 30–39 years 63 (35.8) 67 (38.7)
 40–49 years 56 (31.8) 66 (38.1)
 50 years 33 (18.8) 20 (11.6)
Median (range) duration 
 of back pain in years

8 (1–35) 8 (1–35)
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Table 2 Breakdown of resource use and costs associated with initial treatments (in 2002–3 pounds sterling)

Mean (SD) resource use per patient* Mean (SD) cost per patient*

Resource use item Surgery (n = 139) Rehabilitation (n = 151) Surgery (n = 139) Rehabilitation (n = 151)

Surgical stabilization
Duration in theatre in minutes 182 (76) N/A
Costs related to theatre duration:
 Cost of theatre per se £204 (£85) N/A
 Cost of theatre personnel £2635 (£1409) N/A
 Cost of anaesthetics† £24.07 (£29.55) N/A
Radiography‡ 0.69 (1.06) N/A £18.39 (£24.48) N/A
Surgical implants used 96%§ N/A £1703 (£1589) N/A
Blood products used 18%§ N/A £77.79 (£241) N/A
Surgery related inpatient 
 hospital stay in days

7.70 (3.13) N/A £2933 (£1192) N/A

Mean total cost of a surgical 
 stabilisation operation¶

£7610 (£2643) N/A

Intensive rehabilitation
Number of half day rehabilitation 
 sessions attended

N/A 26.32 (6.94)

Costs related to session attendance:
 Cost of programme personnel N/A £513.79 (£135.51)
 Cost of hospital gym or 
  exercise rooms

N/A £223.70 (£59)

 Cost of hydrotherapy sessions N/A £526.36 (£138.82)
Accommodation required N/A 36.5%§ N/A £350.81 (£506.99)
Mean total cost of a course of 
 intensive rehabilitation**

N/A £1615 (£644)

Mean total cost of interventions £6011 (£3896)†† £1410 (£808)††

N/A = Not applicable.

* Calculated for 139/176 surgery patients and 151/173 rehabilitation patients receiving allocated therapy.
† Includes cost of administering and monitoring anaesthetics.
‡ Includes cost of radiography plus a 30 minute allocation of radiographer time.
§ Proportion of patients consuming resource.
¶ Includes low cost items not shown in the table—that is, use of image intensifi er and post-operative pain control costing £0.20 and 
£ 14.82 per patient, respectively.
** Includes low cost item not shown in table—that is, exercise equipment (chair and mat) at £0.74 per patient.
†† Calculated across all 176 surgery patients and all 173 rehabilitation patients.

Patient costs
Table 3 shows that patient costs related to back pain were 
similar in both arms.

Overall costs
Table 4 shows that at two years, spinal fusion costs £7830 (SD 
£5202), and intensive rehabilitation £4526 (SD £4155). The 
cost difference of £3304 favoured intensive rehabilitation 
(£2317 to £4291, P < 0.001).

Return to work
At baseline, 88/176 (50%) of the surgery group and 
79/173 (46%) of the rehabilitation group were not in paid 

employment. By 24 months, 18 of these 88 in the surgery 
group (20%) and 19 of the 79 in the rehabilitation group 
(24%) had started some form of employment, a non-
 signifi cant difference of 4% (8% to 12%, P = 0.71). The 
mean number of days to obtaining paid employment was 
326 (SD 167) days and 323 (SD 278) days, respectively.

The mean total number of hours worked from baseline to 
24 months in the surgery group was 1678 (SD 1847) hours 
and in the rehabilitation group 1707 (SD 1870) hours (differ-
ence 29, 95% confi dence interval 419 hours to 361 hours, 
P = 0.89). Corresponding gross earnings were £19 648 
(SD £22 256) and £20 034 (SD £22 564), respectively—a non-
signifi cant difference of £386 (£5088 to £4317, P = 0.87).
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Table 3 Other back pain related NHS contacts and patient costs to 24 months after randomisation (2002–3 pounds sterling)

Resource use item

Mean (SD) No per patient Mean (SD) cost per patient

Mean cost difference 
(95% parametric CI)

Surgery 
(n = 176)

Rehabilitation 
(n = 173)

Surgery 
(n = 176)

Rehabilitation 
(n = 173)

Other back pain related NHS contacts
Surgery related 
 follow-up outpatient 
 clinics

2.87 (2.41) 1.21 (1.77) £190 (£159) £82 (£119) £108 (£78 to £137)*

Physiotherapy 
 outpatient clinics

3.88 (7.09) 3.91 (7.60) £286 (£523) £301 (£584) £15 (£131 to £101)

Other back pain related 
 outpatient clinics

2.06 (4.33) 2.51 (6.41) £124 (£241) £121 (£224) £3 (£46 to £52)

Unplanned hospital 
 admissions for spinal 
 surgery

0.07 (0.27) 0.31 (0.50) £451 (£1881) £2128 (£3522) £1677 (£2271 to £1083)*

Other back pain related 
 hospital admissions.

0.18 (0.49) 0.07 (0.25) £130 (£910) £73 (£555) £57 (£101 to £215)

General practitioner 
 consultations

7.38 (9.23) 6.81 (8.49) £198 (£232) £185 (£212) £13 (£33 to £60)

Practice nurse 
 consultations

0.86 (2.09) 0.62 (1.84) £15 (£35) £11 (£31) £4 (£3 to £11)

General practitioner 
 home visits

0.69 (1.81) 0.31 (1.03) £44 (£113) £19 (£62) £24 (£5 to £43)†

Practice nurse 
 home visits

0.61 (2.07) 0.24 (1.15) £12 (£41) £4 (£18) £8 (£2 to £15)†

Patients attending 
 unplanned intensive 
 rehabilitation

14 0 £162 (£453) £0 £162 (£94 to £229)*

Prescriptions received 14.23 (27.05) 13.43 (20.26) £95 (£200) £84 (£141) £11 (£25 to £46)

Total other back pain 
 related NHS contact 
 costs

£1707 (£2451) £3009 (£4001) £1302 (£1999 to £605)*

Back pain related costs to patients
Visits to complementary 
 practitioners

4.00 (13.19) 2.77 (11.70) £89 (£325) £92 (£501) £3 (£92 to £86)

Home visits from 
 complementary 
 practitioners

0.19 (2.26) 0.03 (0.17) £6 (£71) £1 (£5) £5 (£6 to £15)

Items of over the counter 
 medication purchased

N/A N/A £17 (£34) £14 (£36) £3 (£4 to £11)

Total back pain related 
 patient costs

£112 (£350) £107 (£502) £5 (£86 to £96)

Total back pain related 
 follow-up costs

£1819 (£2511) £3116 (£4120) £1297 (£2014 to £580)*

N/A = Not available.

* P  0.001.
† P < 0.05.
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Utility
Figure 1 shows utility levels at baseline, six, 12, and 24 months. 
We found no signifi cant differences in utility at any of the 
follow-up points. A notable difference in utility existed at 
baseline (0.35 for surgery, 0.41 for rehabilitation). Adjusting 
for such a difference (using a regression based approach with 
trial arm and baseline score as explanatory variables) and 
 recalculating the area under utility frontiers specifi c to patients 
produced a mean QALY difference in favour of surgery of 
0.068 (0.02 to 0.156, P = 0.13; mean 1.004 (SD 0.405) for 
surgery and 0.936 (SD 0.431) for rehabilitation).

Cost utility
The incremental cost per QALY of using a policy of imm-
ediate surgery was estimated to be £48 588 (£279 883 to 
£372 406). Figure 2 shows the cost effectiveness acceptabil-
ity curve. Reading off from the curve shows that if decision 
makers are willing to pay £30 000 for a QALY (the value 
above which the National Institute for Clinical Excellence 
is less likely to accept a technology as cost effective23), at two 
years, the chance that surgery will be cost effective is less 
than 20%.

Sensitivity analysis
Although uncertainty surrounds several trial variables, 
alternative assumptions for some would not affect the 
baseline conclusion. For example, replacing unit costs 
provided by the lead investigating centre with national 
averages had they been available would make little difference. 
Similarly, alternative discount rates will have little effect over 
a two year time horizon.

Table 4 Summary of initial treatment and 24 month follow-up costs (2002–03 pounds sterling)

Surgery group (n = 176) Rehabilitation group (n = 173) Mean cost difference 
(95% parametric CI)

Cost category Mean (SD) cost per patient Mean (SD) cost per patient

Initial treatment cost £6011 (£3896) £1410 (£808) £4601 (£4013 to £5189)*
Other back pain related NHS 
 contacts at 24 months

£1707 (£2451) £3009 (£4001) £1302 (£1999 to £605)*

Total NHS cost £7718 (£5138) £4419 (£4026) £3299 (£2322 to £4267)*
Back pain related patient 
 costs at 24 months

£112 (£350) £107 (£502) £5 (£86 to £96)

Total cost of care £7830 (£5202) £4526 (£4155) £3304 (£2317 to £4291)*

*P  0.001.

Figure 1 Mean utility levels (with 95% confi dence intervals) 
generated by applying the EuroQol EQ-5D social tariff to patients’ 
self reported health state descriptions.
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We used sensitivity analysis to examine uncertainty 
surrounding the use of different surgical techniques for 
spinal stabilisation. Assuming any patient in the trial 
receiving surgery underwent posterolateral fusion, the least 
costly technique at £6170 (£5638 to £6803), reduced the 
total cost in the surgery group to £6655 and in the rehabilita-
tion group to £4252. The incremental cost per QALY fell to 
£35 338 (£188 876 to £410 404). Alternatively had all patients 
undergone 360° fusion, the most costly technique at £9279 
(£8632 to £9917), then the mean cost difference would have 
increased to £4132 (£3065 to £5199) and the incremental cost 
per QALY to £60 765 (£420 210 to £617 081).

If the difference in utility observed at 24 months 
(0.566 for surgery and 0.532 for rehabilitation after adjust-
ments for baseline) was maintained for a further two years, 
the incremental cost per QALY at four years would fall to 
£25 398 (£13 121 to £75 916).

We also examined the impact of patients receiving 
other treatments subsequent to their allocated therapy. At 
two years, 45 patients (38 in the rehabilitation group and seven 
in the surgery group) had received both treatments under 
comparison. Holding all else constant and assuming patients 
in each arm would continue to receive both treatments in 
years three, four, and fi ve at the rates observed in years one and 
two, the cost difference is reduced to £1144 (£312 to £2600) 
and the cost per QALY to £16 824 (£156 358 to £138 911). 
If the trend continued but at half the rate observed in years 
one and two, the excess cost of the surgery arm at fi ve years 
would fall to £2165 (£904 to £3425) and the cost per QALY to 
£31 838 (£407 056 to £283 783).

Discussion
A policy in which patients receive spinal fusion surgery as 
fi rst line therapy for their chronic low back pain seems not 
to be a cost effective use of health care resources at two year 
follow-up.

Strengths of the study
The main strength of this study lies in the pragmatic approach 
adopted by the randomised controlled trial. Patients were 
not denied alternative health care interventions for chronic 
pain of the low back, and consequently the treatment 
patterns observed are likely to refl ect those prevailing in 
routine practice.

At 24 months, the numbers of patients receiving both 
trial interventions differed signifi cantly between the two 
arms. It is possible that this difference will increase beyond 
the two year follow-up point, and sensitivity analyses 
have shown that this could substantially affect the cost 
effectiveness of surgery.

Our study found no signifi cant differences in work  status 
measures. Employment data were available from two of the 
three previously published randomised trials comparing 
surgical and conservative intervention for chronic pain of 
the low back.3, 5 The number of patients returning to work 
differed between arms (in favour of surgery) in one of these 

trials, but the same trial found no signifi cant differences in the 
mean number of sick days per patient and resulting produc-
tivity costs at 24 months.5, 24

This paper presents a cost utility analysis of surgery 
compared with intensive rehabilitation by using principles of 
cognitive behaviour therapy in the management of chronic 
pain of the low back. Although other economic evalua-
tions of interventions for chronic low back pain have been 
published,24–26 only one compared operative and conservative 
treatment.24 Rehabilitation included in that study focused 
primarily on routine physiotherapy: comparison of cost 
effectiveness results between these two trials would not 
therefore be useful.

Conclusion
Although a policy of spinal fusion surgery as fi rst line therapy 
for chronic low back pain seems not to be a cost effective use 
of health care resources at two year follow-up, our analyses 
have shown that this conclusion could alter if the number 
of rehabilitation patients subsequently receiving surgery 
continues to increase in the future. Only with further 
follow-up of patients can a robust and reliable estimate of 
the long term cost effectiveness of surgery compared with 
intensive rehabilitation in the management of chronic low 
back pain be obtained.
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What is already known on this topic
An economic evaluation of surgery for chronic low back pain 
that used unspecifi ed physical therapy as the comparator 
indicated that surgery may be cost effective

A small trial reported that an intensive rehabilitation 
programme including cognitive behaviour therapy produced 
similar clinical benefi ts to spinal fusion surgery0

The cost effectiveness of surgery compared with such a 
programme has not been assessed

What this study adds
In the short term, compared with intensive rehabilitation, 
surgical stabilisation of the spine as fi rst line treatment for 
chronic low back pain patients who have already failed stan-
dard non-operative care seems not be cost effective

If the number of rehabilitation patients observed having 
surgery continues to increase beyond two years, or the small 
treatment benefi t at two years continues, this conclusion may 
change
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Aims

To understand and interpret correlation coeffi cients and 
regression models and to decide whether these statistics 
can be generalised to other populations or used to estimate 
‘normal or reference’ values.

Correlation coeffi cients
Correlation coeffi cients describe how closely two variables 
are related, that is, the extent to which the variation in 
one measurement is explained by another measurement. 
Pearson’s correlation coeffi cient (r) is a parametric statistic 
that is used to measure the strength of a linear association 
between two continuous variables that are both normally 
distributed. A linear association indicates that as the value of 
one variable changes, so does the value of the other variable.

The range of the correlation coeffi cient, r, is from –1 
to +1. A correlation coeffi cient of +1 indicates a per-
fect positive linear association, that is, as the value of one 
variable increases the value of the other variable also 
increases. A correlation coeffi cient of 1 indicates a perfect 
negative linear association, that is, as the value of one variable 
increases the value of the other variable decreases. In prac-
tice, it is rare to have a perfect linear association between two 
variables because, even if they are measurements of the same 
characteristic, measurement error results in ‘noise’ around 
them. A correlation coeffi cient of zero indicates that there 
is no linear association between the two variables. Suggested 
guidelines for interpreting the size of the correlation 
coeffi cient in psychological research are that values between 
0.1 and 0.3 are regarded as small correlations, between 0.3 
and 0.5 are moderate correlations, and above 0.5 are large 
correlations.1 In clinical medicine 0.2 is considered weak, 
0.5 moderate and 0.8 a strong association.2 However, these 
guidelines will not apply to all types of data. Large correla-
tions may look unimpressive when the data are plotted and 
therefore each study must be judged on its merits given that 
a small correlation that is important in an epidemiological 
study may not be clinically important.3

The P value associated with a correlation coeffi cient is 
simply a test of whether the slope of the line through the 
plotted data points is signifi cantly different from zero, that is, 
a horizontal line. The P value is heavily reliant on the sample 
size and thus a small correlation of no clinical importance 
will become statistically signifi cant when the sample size is 
large enough.

A perfect positive linear relationship with the correlation 
coeffi cient r = 1 is shown by the dotted lines connecting 

Learning objectives
On completion of this unit, participants will be able to:

interpret a correlation coeffi cient;   •

recognise the limitations of correlation coeffi cients;   •

interpret the meaning of linear and multiple    •

regression coeffi cients;
describe the characteristics of reliable explanatory    •

variables;
decide whether a regression model is valid;   •

explain the requirements for calculating normal or    •

reference population values.

Background

In research, we often want to know how closely two 
continuously distributed measurements are related. For 
example, we may want to know how closely weight is 
related to height in a sample of school children. To measure 
the strength of association between two continuously dis-
tributed variables, a correlation coeffi cient is used. We may 
also want to know how well one continuously distributed 
measurement predicts the value of another measurement. 
For example, we may want to know how well height predicts 
‘normal’ values of lung capacity in a community of adults. 
To use one measurement to predict the value of another 
measurement, a regression model is required. Although 
both a correlation coeffi cient and a regression model can 
be used to describe the degree of association between two 
variables, the two methods provide very different statistical 
information.
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94   UNIT 7  Correlation and regression

the data points in Figure 7.1. For the upper dotted line, the 
outcome variable increases by 2 units for every 1 unit 
increase in the explanatory variable. For the lower dotted 
line, the outcome variable increases by 0.5 units for every 
1 unit increase in the explanatory variable. Thus, the r value 
does not distinguish between different slopes and a high 
r value does not necessary imply that the two variables are 
equal to one other. The dashed line in Figure 7.1 has an 
r value of zero because the outcome variable has the same 
value for all values of the explanatory variable, and therefore 
the slope is zero.

It is important to remember that the absence of a lin-
ear association does not mean that there is no association 
between the variables because the relationship could be more 
complex, such as a cyclical or curved relationship. Moreover, 
a high correlation coeffi cient between two variables does not 
imply that the variables have a causal relationship.

The correlation coeffi cient (r) can be squared to give 
the coeffi cient of determination (r2). The coeffi cient of 
determination is useful because it provides an estimate of 
the per cent of variation in one variable that is explained by 
the other variable. For example, a correlation coeffi cient of 
0.6 has a coeffi cient of determination equal to 0.36, which 
indicates that 36% of the variation in one variable is explained 
by the other variable.

Glossary

Term Defi nition

r value Pearson’s correlation coeffi cient that measures 
the strength of a linear relationship between 
two continuous normally distributed variables. 

r 2 The coeffi cient of determination is equal to the 
squared correlation coeffi cient and provides 
an estimate of the per cent of variation in one 
variable that is explained by the other variable. 

Random 
selection

Sample taken from a population in which all 
people have an equal chance of being selected.

Figure 7.1 Linear relationship between two variables.
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The assumptions that must be satisfi ed to use a Pearson’s 
correlation coeffi cient are that:

the sample has been selected randomly from the    •

general population;
both variables are normally distributed;   •

the observations are independent, that is, each person    •

is included once only;
the relationship between the two variables is linear.   •

The assumption that both variables are approximately 
normally distributed is important, and if either variable 
departs from normality in a signifi cant way, a non-parametric 
correlation coeffi cient, such as Spearman’s rho or Kendall’s 
tau, should be used. In the following example, the asso-
ciation between weight and length in 100 babies of one 
month of age who were born at full term is examined. The 
distribution of weight was shown in Figure 6.1 in Unit 6. 
Figure 7.2 shows the distribution of length. Both weight and 
length are both approximately normally distributed in the 
sample. Although neither distribution is perfectly normal, 
the distributions are approximately bell-shaped and there 
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UNIT 7  Correlation and regression   95

are no outliers, that is, extreme data points that would bias 
the estimate of a correlation coeffi cient.

It is always important to obtain a scatter plot of the data 
to provide a visual image of the relationship, otherwise 
known as the ‘look-and-see’ test. A scatter plot is a visual 
representation of the data points that provides information 
about the strength of the relationship between two variables, 
the degree of linearity, whether the association is positive 
or negative and if any outliers are present. In a scatter plot, 
the values of one variable are plotted along the horizontal 
or x-axis with the corresponding values of the other vari-
able plotted along the vertical or y-axis. Either variable 
can be plotted along either axis, because the correlation 
coeffi cient will be identical whichever axes are used. However, 
best practice is to plot the outcome variable along the y-axis 
and the explanatory variable along the x-axis. Scatter plots 
are invaluable for helping to interpret both the correlation 
coeffi cient and the regression model correctly.

Figure 7.3 is a scatter plot showing how length and weight 
are related to one another in babies at 1 month of age. The 
plot indicates that weight increases linearly with an increase 
in body length, with a moderate amount of scatter around 
the line through the data points. The Pearson’s correlation 
coeffi cient (r) for this relationship is 0.74, indicating that in 
this sample, 55% (0.74 × 0.74 multiplied by 100 to obtain 
a percentage) of the variation in weight is explained by 
body length. The r value of 0.74 is positive because weight 
increases as body length increases. The P value of <0.0001 
indicates that the slope of the line through the data points is 
signifi cantly different from zero.

Limitations
Correlation coeffi cients are rarely used as statistics in their 
own right because they do not discriminate between different 
types of relationships in the data. Figure 7.1 shows how an 
r value can be +1 for two very different lines. In addition, cor-
relation coeffi cients can be over-valued and misinterpreted 
when used without regard for their assumptions and limita-
tions. The size of a correlation coeffi cient depends on many 
factors, such as the relationship between the two variables.4 
A major limitation is that the range of values on either axis 
infl uences the size of the correlation coeffi cient. For the same 
relationship between two variables, the correlation coeffi cient 
becomes larger, and therefore more signifi cant, as the range 
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Figure 7.2 Distribution of length at 1 month of age in a 
population sample of 100 babies who were born at term.

Figure 7.3 Relationship between weight and body length at 
1 month of age in 100 term babies.
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TAKE HOME LIST

An • r value of +1 or 1 indicates a perfect linear 
relationship and an r value of 0 indicates no linear 
relationship.

In general, an • r value below 0.3 indicates a poor 
association and an r value above 0.8 indicates a strong 
association.

An • r value does not give an indication of the slope or the 
shape of the relationship between the variables.

An • r value is highly infl uenced by the range of the 
data points and the P value is highly infl uenced by 
the sample size.

Only data from a random sample of the population can • 
be used to describe the true relationship between two 
variables.

Valid comparisons of • r values can only be made between 
random population samples.
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of a variable increases. For this reason, correlation coeffi cients 
cannot be compared between studies in which the range of 
values is different. The only correlation coeffi cients that 
describe the true relationship between two variables are those 
measured in random samples of the population in which the 
range of values represents the true range in the population.

If the assumption of random selection is not met, the 
correlation coeffi cient may be a biased estimate of the true 
association between two variables. Thus, it would not be valid 
to generalise the association from a small selected sample to 
other populations, or to compare r values from studies in 
which the selection criteria and therefore the characteristics 
of the sample are different.

Linear regression
A linear regression model generally conveys more  useful 
information than a correlation coeffi cient because the model 
provides a mathematical equation that explains the asso-
ciation between two or more variables. Regression models 
are sometimes used for hypothesis testing, but their main 
value lies in building predictive equations. For example, 
regression equations can be used to predict ‘normal’ popula-
tion values for variable characteristics such as weight, blood 
pressure, lung function etc. from other characteristics such 
as height, age or gender. In general, a regression equation is 
used to predict the range of values that are expected to occur 
naturally in the general population given the value of the pre-
dictive variable. In this case, the usual emphasis is on building 
an accurate predictive model that only contains variables that 
have important statistical and biologically plausible roles.

When using linear regression, it is essential that the 
research question is framed so that the explanatory and 
outcome variables are classifi ed correctly. In a scatter plot, 
the data to be used in a linear regression are displayed with 
the explanatory variable on the x-axis and the outcome 
variable on the y-axis, as shown in Figure 7.3. An important 
concept is that the regression equation predicts the mean y 
value for any observed x value. In regression, the measure-
ment error around the explanatory variable on the x-axis is 
not taken into account. For this reason, measurements that 
can be taken accurately, such as age and height, make good 
explanatory variables. Measurements that are diffi cult to 
measure accurately or are subject to bias, such as birth weight 
recalled by parents when their child has reached school age, 
should be avoided as explanatory variables because measure-
ment error, in this example as a result of recall bias, will com-
promise the accuracy of the predictive equation.

For a simple linear regression the ‘line of best fi t’, that is 
the regression line through the data points, is described by 
the following equation:

y = a + bx

where ‘y’ is the outcome variable, ‘x’ is the explanatory 
variable, ‘a’ is the intercept of the line on the y-axis and ‘b’ is 

the regression coeffi cient. The intercept value ‘a’ is the point 
at which the regression line intersects with the y-axis when 
the value of ‘x’ is zero. The intercept rarely has a clinical inter-
pretation. On the other hand, the slope of the line, estimated 
by ‘b’, does have a clinical interpretation in that it represents 
the unit change in the outcome variable ‘y’ with each unit 
change in the explanatory variable ‘x’. From the lower dotted 
line shown in Figure 7.1, the intercept (a) is zero and the slope 
of the line (b) is 0.5 because the outcome variable increases by 
0.5 units for every increase of 1 unit in the explanatory vari-
able. For this line, the equation would be:

Outcome variable = 0 + (0.5 × explanatory variable)

The regression coeffi cients for a line of best fi t through 
a scatter plot can be obtained by using a statistics program. 
The equation of the regression line through the data shown 
in Figure 7.3 is:

y = 6.28 + 0.19 × x, that is
Weight = 6.28 + 0.19 × Length

The sign for the coeffi cient for length is positive, indicating 
that weight increases with increasing length. In addition, R 
and R square (R2) values are given for the regression model. In 
simple linear regression with only one explanatory variable, 
the R value is the absolute value of the correlation coeffi cient 
(r) and R2 is the coeffi cient of determination (r2). In regres-
sion, the capital letter ‘R’ rather than lower case ‘r’ is generally 
used – this helps to distinguish Pearson’s correlation coeffi -
cients from multiple correlation coeffi cients that are obtained 
when there is more than one explanatory variable in the 
regression model. The R square value for the above model is 
0.55, the same value as r2, and indicates that at 1 month of age, 
length explains 55% of the variation in weight. The P value 
for length in the model is <0.0001, indicating that length is a 
highly signifi cant predictor of weight. The regression coeffi -
cient for length indicates that, on average, weight increases by 
0.19 kg for each centimetre increase in the length of the baby. 
The length of a baby can be substituted into the equation to 
obtain a predicted value for weight. From the equation, the 
predicted weight for a 1 month old baby of 56 cm would be 
6.28 + (0.19 × 56), or 4.4 kg.

Glossary

Term Defi nition

Normal 
values

Range of values in which the majority of 
people in a population are expected to lie.

Residuals Distance between an observed value and its 
predicted value, in this case the value 
predicted by the regression line.

Line of 
best fi t 

Regression line through a set of data points 
calculated to minimise the sums of the 
squared residuals.
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Assumptions for regression
To avoid bias in a regression model, or a lack of precision 
around the estimates, there are several statistical assump-
tions that must be met. For hypothesis testing, the sample 
does not have to be a random population sample because, 
unlike a correlation coeffi cient, the range of the data values 
does not infl uence the regression equation. However, the 
fi nal prediction equation should only be applied to popula-
tions with the same sampling criteria, and therefore the same 
characteristics, as the study sample.

The assumptions for using linear regression are discussed 
in detail in the attached reprint by Garnett et al. (2005) and 
are summarised below.

the line of best fi t, that is, the region between the 2.5 and 
97.5 percentiles. Thus, by defi nition, 2.5% of people will lie 
below the reference range and 2.5% of people will lie above 
the reference range. The reference intervals for the  scatter 
plot shown in Figure 7.3 have been added as shown in 
Figure 7.4. As expected, only 5% of the sample, that is, 5 of 
the sample of 100 babies, are outside the reference range.

Reference intervals are often used in health care 
settings and clinics in which diagnostic testing is important. 
For example, psychologists use reference values to predict 
whether a patient is within the range for normal cognitive 
functioning, and respiratory specialists use reference  values 
to decide whether a patient’s lung function is within the 
normal range. Reference intervals are also used to provide a 
range of normal values against which to assess the results of 
biochemical blood tests. Obviously, for calculating normal 
population values, it is essential that a random population 
sample is selected and, if precision around the estimates is 
required, then a large sample needs to be enrolled. To build 
equations to predict accurate reference ranges, a sample size 
of at least 200 people is recommended.6

Multiple regression
Regression models can be built using more than one 
explanatory variable. The term multiple regression is used 
to describe models in which there are multiple predictive 
variables. For a regression equation with two or more 
explanatory variables, the equation is as follows:

y = a + b
1
x

1 
+ b

2
x

2
+ b

3
x

3
 . . .

Adding further predictors into the model has the poten-
tial to increase the R square value and therefore the amount 
of variation that can be explained. For  example, instead 
of predicting weight from body length as in Figure 7.3, 

The assumptions that must be satisfi ed to use a 
regression model are that:

the observations are independent of one another;   •

the data have been collected in a period when the    •

relationship between the variables remains constant;
all important explanatory variables are included in    •

the model;
the explanatory variables must not be strongly related    •

to one another;
the relationship between each explanatory variable    •

and the outcome is linear;
the residuals are normally distributed;   •

the variance is constant over the model;   •

there are no infl uential outliers.   •

Regression models are robust to moderate degrees of 
non-normality in the distribution of the outcome and 
explanatory variables, provided that the sample size is large 
and there are no infl uential outliers. In general, it is the 
‘residuals’ and not the variables that have to be normally 
distributed. The residual for each data point is its  distance 
from the regression line. Regression models are often 
described as ‘best fi t’ or ‘least squares’ models because 
calculating the equation is based on the mathematics of 
minimising the sum of squared residuals relative to the total 
variation.5 As for most statistics, the residuals are squared 
to remove negative values. Most statistical programs 
provide options for examining whether the distribution 
of the residuals is normal and whether the variance is 
constant across the model.

Normal or reference values
A common use of regression equations is to calculate 
‘normal values’, which are often called ‘reference values’. 
Normal values represent the range in which the values for 
the majority of people in the population lie.4 The region in 
which most people are expected to lie is usually described 
by the area that is 1.96 standard deviations above and below 

Figure 7.4 Relationship between weight and body length 
shown with reference range.
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Reading and questions
Reprint
Garnett S, Hayen A, Peat JK. The art and science of 
regression modelling; methods for building valid models to 
explore hormone and body composition interactions. Ped 
Endocrinol Rev 2005;3:40–44. (See p. 102.)

The reprint by Garnett et al. (2005) discusses the assumptions 
of regression models and explores how spurious associations 
can be generated through unsound modelling techniques. 

After reading the reprint answer the following questions:
What are the two major uses of regression models in 1 
health research?

other predictors such as maternal height, number of 
siblings, gender etc. could be examined to assess whether 
they improve the predictive value of the model by explaining 
more of the variation in weight. In the data set, gender is a 
binary variable and coded as 0 = male and 1 = female. When 
gender is added to the model, the regression equation for 
the data is:

Weight = 5.93 + (0.19 × Length) – (0.22 × Gender)

The P value for length in the model remains signifi cant 
at <0.0001 and the P value for gender is 0.01, indicating 
that it is also a signifi cant predictor of weight. The addi-
tion of gender to the model increases the R square value 
from 0.55 to 0.59, and thus gender explains a further 4% of 
the variation in weight. The regression equation still 
indicates that weight increases by 0.19 kg for each centime-
tre increase in the length of the baby. The negative sign for 
the coeffi cient for gender indicates that weight decreases 
as the coding for gender increases, that is, female babies 
have a lower weight than male babies. This is shown when 
the regression lines for male and female babies are plotted, 
as shown in Figure 7.5.

The regression equation indicates that female babies 
are, on average, 0.22 kg lighter than male babies because for 
gender = 0, that is, male, the last term in the model is zero, 
and for gender = 1, that is, female, the last term in the model 
is –0.22. Thus, the predicted weight for a one-month-old 
male baby of 56 cm would be 5.93 + (0.19 × 56) or 4.7 kg, 
and for a one-month-old female baby would be 0.22 kg 
less at 4.5 kg.

Predictor variables that do not have a signifi cant P value 
and/or that explain only a small amount of additional 
variation are usually excluded from regression models. 
It is important to avoid creating a model that includes more 
variables than can be supported by the sample size or many 

variables that explain little of the variation. Such  models 
are described as being ‘over-fi tted’ and the coeffi cients 
may be unreliable predictors of the outcome so that their 
signs (positive or negative) and slopes have no meaningful 
interpretation.

In building a multiple regression model, it is essential that 
explanatory variables that are highly correlated with one 
another should not be included in the model. Explanatory 
variables that are related to one another in an important 
way share the same amount of variation in the model, and 
for this reason tend to distort the regression coeffi cients and 
lead to a loss of precision in estimating reference intervals. 
For  example, parental height should not be included as a 
predictor of babies’ weight because it correlates signifi cantly 
with babies’ length with an r value of 0.7. A high correla-
tion between two explanatory variables suggests that they are 
both slightly different estimates of the same characteristic 
and that only one variable is needed. It is always preferable to 
use the variable that has the most biological plausibility and 
that can be measured with the most accuracy, although other 
factors such as cost, invasiveness, and ease of measurement 
are also important factors.

Figure 7.5 Regression lines of best fi t shown for male and 
female babies.
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TAKE HOME LIST

Regression models provide a mathematical equation that • 
can be used to predict expected values of the outcome 
variable using one or more explanatory variables.

When a large random sample of the population is • 
enrolled, ‘normal or reference’ population values can be 
calculated.

Explanatory variables should be measurements that can • 
be made accurately.

Outcome and explanatory variables must be correctly • 
classifi ed.

In multiple regression, the explanatory variables must not • 
be signifi cantly related to one another.
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Table 7.1 Predicted FVC and per cent predicted FVC

Height (m) Age (years) Gender
Measured 
FVC (L)

Predicted 
FVC (L)

Per cent 
predicted FVC

1.50 20 Female 3.8 3.19 119.0%
1.74 20 Female 3.8 
1.50 60 Female 3.8 
1.74 60 Female 3.8 
1.58 20 Male 3.8 
1.82 20 Male 3.8 
1.58 60 Male 3.8 
1.82 60 Male 3.8 

What criteria need to be met in order to compare 2 
correlation coeffi cients with one another?
If regression assumptions are violated, what infl uence 3 
does this have on the model?
If two explanatory variables are highly related to one 4 
another, what is the effect when they are both included in 
the model?

Worked example

The equations for predicting normal values for adult lung vol-
ume measured as forced vital capacity (FVC) were reported 
by Belousova et al. in 1997.7 The values were derived from a 
large random sample of adults aged between 18 and 73 years. 
In the paper, the multiple regression equation for predicting 
FVC with rounding to two decimal places is:

FVC =  1.70 + (0.62 × Height3) 
 (0.03 × Age) + (0.59 × Male)

In this equation, FVC is expressed in units of litres, height 
in units of metres, age in units of years, and ‘male’ is a binary 
variable coded as 1 = male and 0 = female. The R2 value for 
the model is moderately high at 0.76 and all variables are 
signifi cant predictors with P < 0.0001.

Using this regression equation, calculate predicted 
values for FVC for adults with the height, age and gender 
characteristics shown in Table 7.1. Also, calculate the per cent 
predicted FVC for each value, assuming that the measured 
FVC for each line was 3.8 L. Per cent predicted values are 
calculated as:

Per cent predicted value = (Measured value/Predicted 
value) × 100

After calculating FVC values, answer the following questions:
How would you interpret the coeffi cient for the binary  •

variable ‘gender’?
Are your calculations of predicted FVC in accordance  •

with the signs and sizes of the regression coeffi cients?

What do the estimates of per cent predicted FVC indicate? •

What clinical importance would you attach to these  •

estimates of per cent predicted FVC?
Plot the separate regression lines for male age 20, male age 

60, female age 20 and female age 60 in Figure 7.6.

Exercise

Campeotto F, Kapel N, Kalach N, Razafi mahefa H, Castela 
F, Barbot F, Soulaines P, Dehan M, Gobert JG, Dupont C. 
Low levels of pancreatic elastase 1 in stools of preterm 
infants. Arch Dis Child Fetal Neonatal Ed 2002; 86:198–199. 
(See p. 107.)

Read the short report by Campeotto et al. (2002). In the 
report, the authors explore whether the amount of faecal 
pancreatic enzyme elastase 1 (E1), which is a marker of pan-
creatic function, is related to nutrient intake in pre-term and 
term babies. In the report, Figure 2 shows the relation of fae-
cal E1 to four measures of nutrient intake.

Figure 7.6 Regression lines for predicted FVC values for male 
and female.
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100   UNIT 7  Correlation and regression

The r values and their corresponding P values are shown 
in Figure 2.

What populations can these results be  •

generalised to?
Can the  • r values be compared across the four fi gures 
to assess which measure of nutrient intake is the ‘best’ 
predictor of faecal E1?
The line of best fi t is also shown in Figure 2.
Are the measurements displayed correctly on the  • x- and 
y-axis, that is, are the outcome and explanatory variables 
correctly classifi ed?
Are the lines of best fi t that are shown on the fi gures valid  •

assessments of the relationships given the presentation 
of the explanatory and outcome variable on the x- and 
y-axis?
Do you think that each line meets the assumptions for  •

using regression?

Critical appraisal

Work through this critical appraisal checklist to review the 
paper by Campeotto et al. (2002), and other papers that 
report regression models, to decide whether the results and 
the conclusions are valid and justifi ed.

Quiz

Tick the correct answer for each of the following questions:

A correlation coeffi cient tells us:1 
the slope of the equation through the data;(a) 
how well one variable predicts another;(b) 
how closely two variables are linearly related;(c) 
whether the relationship is linear or non-linear.(d) 

Critical appraisal checklist for an article that reports correlation and/or 
regression analyses

Study designA. 

What is the design of the study?1. 

Was the sample selected randomly?2. 

Is the sample size adequate to justify the statistics used?3. 

Statistical methodsB. 

Have the assumptions for correlation been met?4. 

Have the assumptions for regression been met?5. 

Are any repeated measures treated as independent observations?6. 

Are there any outliers that could infl uence the regression estimates?7. 

Has the model been tested for relationships between explanatory 8. 
variables, normality of residuals and constant variance?

ResultsC. 

Are the outcome and explanatory variables correctly classifi ed?9. 

Have the explanatory variables been measured reliably?10. 

If a line of best fi t is used, is the full regression equation reported?11. 

Are there suffi cient data at the extremities of the model or should 12. 
the prediction range be shortened?

InterpretationD. 

Which patient or population group do the results generalise to?13. 

Have the results been interpreted appropriately?14. 

Are the conclusions valid?15. 
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A correlation coeffi cient is a reliable estimate of associa-2 
tion if:

a large sample size has been enrolled;(a) 
the sample is randomly selected from (b) 

the population;
extra cases are enrolled to ensure a wide range of (c) 

y values;
there is a positive association between two variables.(d) 

A regression model is more reliable if:3 
it has been created using a statistical package;(a) 
there is only one explanatory variable;(b) 
one of the explanatory variables is a binary (c) 

characteristic;
the explanatory variables are not related to (d) 

one another.

Normal or reference values show:4 
the mean +1.96 standard deviations of a (a) 

measurement in a population;
the range of values for 95% of people without an (b) 

illness;

the range of values for all of the normal people in the (c) 
population;

the range in which 95% of values lie in a random (d) 
population sample.
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Introduction
Multiple linear regression modelling, often referred to as 
multiple regression, is commonly used to investigate how 
hormones and body composition interact. However, per-
ceived associations can be misleading if the regression model 
is invalid. The assumptions for regression models which must 
be met in order to avoid biased coeffi cients are shown in 
Table 1. If an assumption is violated, both the reliability and 
stability of the model may be infl uenced leading to inaccurate 
or biased results.

In this article, we outline the problems in interpretation 
that can occur if regression assumptions are not met. In our 
examples, from the literature and our own data, we show how 
invalid regression models can infl uence the prediction of 
fasting insulin and leptin levels from total body fat and fat 
distribution in children.

Purposes of multiple regression modelling
There are two principal uses of multiple regression models 
that affect the way a model is built and the variables that are 

included. One use is for hypothesis testing in which the effect 
of an explanatory variable (or an exposure) on the outcome 
of interest is examined while adjusting for the effects of other 
known explanatory variables (or confounders). This type of 
model is used, for example, to explore the effect of physical 
activity on total body fat after adjusting for age and gender. 
With this type of model, it is important to specify before 
building the model and preferably before collecting the data, 
which variables will be considered for inclusion in the fi nal 
regression model.

The second use of multiple regression is to predict the 
value of an outcome using a set of explanatory or predictive 
variables, for example to predict normal values for charac-
teristics such as total body fat, fat free mass and bone mass. 
An ideal model enables accurate predictions to be made for 
a wide sector of the community but should be parsimonious, 
that is only contain variables that have an important statisti-
cal and theoretical role.

Model Building
Many strategies are used to build multiple regression  models. 
Although automatic software facilities such as forward or 
backward stepwise regression are available, a more rigorous 
approach is to carefully build models using expert knowledge 
at each step. The best predictive variables are explanatory 
variables that have a high correlation with the outcome variable 
and a low correlation with other explanatory variables. Ordering 
explanatory variables by their strength of association (correla-
tion coeffi cient) with the dependent variable is central to the 
art of building reliable predictive models. Associations can be 
obtained with a correlation matrix. Modelling should begin by 
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Abstract
Multiple linear regression modelling is commonly used to investigate how hormones and body composition interact, 
but for valid interpretation a sound methodological approach must be used. It is particularly important that the assumptions 
for regression are met so that spurious associations are not generated. In this article we show how different approaches to 
building a multiple linear regression model can infl uence perceived associations, using examples from the literature and our 
own data related to predicting fasting insulin and leptin levels from total body fat and fat distribution in children.
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adding the predictor with the highest correlation coeffi cient 
(R value) fi rst and noting the size of the regression coeffi cient, 
its standard error and the P value. Then other explanatory vari-
ables are added one at a time in order of their correlation. After 
the addition of each variable, it is important to inspect changes in 
each coeffi cient and its standard error. A coeffi cient that changes 
substantially or a standard error that infl ates by more than 10% 
when another variable is added to the model is a sign of pos-
sible collinearity and an indication that one variable should be 
omitted from the model.

Multiple regression models are dynamic and the changes 
that occur when new variables are added provide important 
information. A fi nal model in which all of the important 
predictors are included and in which all assumptions have 
been met has the highest validity for testing a hypothesis or 
providing a prediction equation.

Study Design
Assumptions 1–4 (Table 1) are determined by the study 
design. For multiple regression, the sample does not have to 
be selected randomly. However, the fi nal prediction equation 
applies only to a group with the same characteristics as the 
study sample.

It is important to recognise that correlation coeffi cients 
cannot be compared between different multiple regression 
models when the sampling criteria are different or when 
the range of measurements in one data set is wider than in the 
other. Correlation coeffi cients are highly dependent on these 
factors in addition to the true relationship between the vari-
ables (1). For example, the correlation between two variables 
such as fat free mass and total body fat is higher at R2 = 0.57 
in children age 3 to 18 years than at R2 = 0.36 in children age 
7 to 8 years largely because the range of values is wider in the 
older age group and not because the relationship is different.

Sample Size
Sample size (assumption 4) is an important issue because 
a multivariate model with a small number of cases and 

several explanatory variables will lack precision and will be 
unreliable. Imprecise estimates may have no sensible inter-
pretation. While there is no clear consensus for estimating 
the minimum sample size, recommendations tend to range 
from 15 to 40 times the number of variables included in the 
model (2).

The larger the sample size, the more likely the model will 
generalise beyond the sample. With a very large sample size, 
variables that predict only a negligible amount of variance 
in the outcome variable may become statistically signifi cant 
even though they may not be clinically important.

Independence
All observations must be independent of each other 
(assumption 5), so that the effect of one explanatory variable 
on the outcome variable is the same regardless of the values 
of the other explanatory variables in the model. Variables 
are said to interact if the effect of one explanatory variable on 
the outcome variable depends upon the level of the second 
variable. Interaction between two variables can be examined 
by creating a new variable which is their product and adding 
the variable in the model.

Collinearity, which is addressed in assumption 6, occurs 
when two explanatory variables are strongly and linearly 
related to one another. In practice, collinearity indicates that 
two variables are both measures of the same entity and there-
fore, the theory behind the model should be examined.

In published equations, it is common to fi nd two variables 
that measure a similar entity have been included, for example 
total body fat and sum of skinfolds. In other models, two vari-
ables of which one is a component of the other, for example 
weight and total body fat, or total body fat and subcutaneous 
abdominal adipose tissue (SAAT), are included as explanatory 
variables. In these situations, collinearity is likely to distort 
the measurements of associations. Only one of the variables 
needs to be included and ideally, the variable to include 
should be the one that can be measured with least error and/
or most easily depending on the situation.

Table 1 Regression assumptions that must be met for a model to be valid

Study design
1 The sample is representative of the population to which inference will be made
2 All important explanatory variables (confounders) and interactions between explanatory variables are included in the model
3 The data have been collected in a period when the relationship between the variables remains constant
4 The sample size is suffi cient to support the model

Independence
5 All observations must be independent of each other
6 The explanatory variables should not be highly linearly related to one another, ie should not have a high degree of collinearity

Model building
7 The relation between the dependent variable and each explanatory variable is approximately linear
8 The residuals are normally distributed
9 The variance is constant over the length of the regression model (homoscedacity)
10 There are no multi-variate outliers that have an undue infl uence on the regression model
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When building a model, the extent of collinearity between 
variables can be assessed using the variance infl ation factor 
(VIF). Most commonly used statistical packages,  including 
SPSS, SAS and STATA, will calculate VIF. In regression 
models, the P values and confi dence intervals are computed 
from an estimate of variance around the regression coeffi -
cients which is proportional to the VIF. The reliability of a 
regression coeffi cient decreases as the VIF increases. When 
the VIF is large, the regression coeffi cients, their variances and 
the P values will have no reliable interpretation. In extreme 
cases, the standard error will be signifi cantly infl ated and the 
direction of effect of the regression coeffi cient may change.

The magnitude of VIF that leads to an unreliable model 
depends on sample size and application. A VIF value 
above 2.0, which corresponds with a correlation coeffi cient 
above 0.7, should be a cause for concern and further inves-
tigation. However, smaller correlations can be problematic 
if the sample size is small or a large number of variables 
are included. Collinearity must be resolved in the model 
building process because, in published results, it is  impossible 
to judge the extent to which the inclusion of collinear 
variables destabilises a model.

Interactions and Polynomials
Collinearity naturally arises when a quadratic term is 
included in a model, for example in a model such as Y = a + 
b

1
X + b

2
X2 in which a variable that is the square of another 

variable is linearly related to it. However, subtracting a con-
stant from the explanatory variable, reduces the collinearity 
between X and X2. The constant that minimises collinearity 
is the mean of the explanatory variable and subtracting this 
value is called centering (2). Centering is crucial for removing 
collinearity when higher order terms are used to improve fi t.

Linearity
In regression modelling, the relation between the dependent 
and explanatory variables should be linear (assumption 7). A 
dependent variable that is not normally distributed may also 
lead to violations of assumptions 8. The explanatory variables 
do not have to be normally distributed but the residuals of 
the model must be. Violations of assumption 7 may be over-
come by transforming either the explanatory or dependent 
variable and violations of assumption 8 by transforming the 
dependent variable.

In medical research, often variables take only positive 
values and are right-skewed which may result in some 
multivariate outliers. For this type of data, logarithmic 
transformation can be helpful. This transformation also 
has the important property that it converts multiplicative 
relations into additive relations. However, when variables are 
logarithmically transformed, the regression coeffi cients must 
be interpreted in terms of the transformed variable, or the 
model can be back-transformed.

The concept of linearity between an outcome and 
explanatory variable also applies to any categorical variable 
such as Tanner staging of pubertal status, which is an ordered 

variable that is ranked from 1 to 5. If there is no linear 
trend across categories or if variables are used in which the 
categories are not ordered, for example ethnicity, then dummy 
variables need to be created in order to describe the effects 
accurately.

Regression Diagnostics
When a regression model meets assumptions 1 to 8 and 
stable estimates have been fi tted, it is then important to check 
assumption 9 by examining whether the spread of the residu-
als is the same for all predicted scores. This can be done by 
plotting residuals against the explanatory variable. A plot 
that is funnel shaped can indicate that the dependent variable 
requires transformation or that there is an interaction with an 
unmeasured effect. If the problem cannot be easily resolved, 
a weighted least squares model that gives more weight to 
smaller residuals may be appropriate.

Finally, assumption 10 can be tested by using standard 
diagnostics. A high number of large standardised residuals, 
that is those greater than 2 in absolute value, should be a cause 
of concern. Another diagnostic is to examine points of lever-
age to detect any data points that have an undue infl uence on 
the fi tted regression line. The leverage of points range from 
1/n to 1, where n is the number of observations in the model. 
Values close to zero indicate that a value has little infl uence 
and values close to 1 indicate that the value may have a large 
infl uence on the model. Leverage values above 0.2 are prob-
lematic and leverage values above 0.5 may indicate an undue 
infl uence on the model.

Describing the Relation between Body 
Composition and Leptin Levels
Multiple regression has been used to explore associations 
between body composition and leptin levels. It has been 
reported that when leptin levels are adjusted for differences in 
body composition and body fat distribution, a sex difference 
is no longer apparent (3). The regression coeffi cients from 
this study are shown in Table 2. In the fi rst model, the nega-
tive sign for fat free mass is in contrast to the positive relation 
shown in bi-variate analysis. Given that the variables fat free 
mass and total body fat are likely to be related, this indicates 
instability resulting from collinearity.

Although the fi nal model contains six variables, the sample 
size was only 74 children. This could explain why sex, which 
is signifi cant in smaller models, becomes non-signifi cant 
in the fi nal model. The instability of the fi nal model would 
also be increased by the addition of two further variables, 
SAAT and intra-abdominal adipose tissue (IAAT), which are 
presumably related not only to one another but also to total 
body fat and fat free mass. When SAAT and IAAT are added 
the coeffi cient for total body fat changes from 1.26 to 0.98 
(a 22% reduction) and the standard error infl ates from 
0.09 to 0.16 (a 77% increase), which indicates collinearity. 
Moreover, the sign of the coeffi cient for IAAT is reversed 
when compared with the bi-variate analyses, which indicated 
a strong, positive relation between IAAT and leptin level. 
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These changes in the regression coeffi cients and their stan-
dard errors should alert researchers to question the way in 
which the model can be interpreted.

It has also been reported that serum leptin and IGF-I do not 
have a signifi cant effect on fasting insulin level after adjusting 
for other factors, including sex, anthropometry, total body fat 
and fat distribution (4). Again, this was a relatively small study 
with 61 children but 10 variables were included in the fi nal 
model. The main conclusion that leptin and IGF-I levels, the 
fi nal two variables added to a model containing sex, pubertal 
stage, height, weight, total body fat, muscle fat, IAAT and sum 

of skinfolds, were not signifi cant predictors of fasting insulin 
level could well be a type II error because of small sample 
size. Unfortunately, no details of the coeffi cients, their signs 
or standard errors are reported to allow us to judge whether 
collinearity between variables may have been a cause of insta-
bility. Given the nature of the variables and the signs of their 
regression coeffi cients, which indicate a changed direction of 
effect, it is likely that the fi nal model was destabilised.

Neither of these papers includes information that verifi es 
the assumptions of regression modelling were met. Although 
both papers discuss possible interactions between variables 
as an explanation of effects, no formal interactive terms were 
included in either model. It seems more likely that collinearity 
and instability rather than interactions will have infl uenced 
the perceived relation between the variables.

Effects of Removing Collinear Terms
We used data from 60 children randomly selected from a 
larger sample [Garnett unpublished data] to explore how 
sample size and collinearity may have produced the problems 
discussed above. Regression coeffi cients for predicting fast-
ing insulin level are shown in Table 3. Fasting insulin level 
was logarithmically transformed to meet the assumptions 
of normality. The columns on the left hand side of the table 
show the regression coeffi cients that would be reported from 
univariate analysis and the columns on the right hand side 
show the coeffi cients for the same variables after they have 
all been entered into the model. The changes in signs from 
the univariate analysis to the model, the infl ation of  standard 
errors, the radically different P values and large VIF values 
in the fi nal model show clear collinearity. We could not 
conclude that after taking sex, height and weight into consid-
eration, no other variable reliably increased the prediction of 
fasting insulin.

If we wanted to test the hypothesis that there was a relation 
between fasting insulin, total body fat, abdominal fat, leptin 
and IGF-I levels, then weight and sum of skinfolds would not 
be included in the same model because both are surrogate 
measures of total body fat. If good model building strategies 

Table 2 Multiple linear regression to predict leptin (3)

Independent 
variable Betaa SE (beta)

Model R 
square P value

Model 1

Sex 0.10 0.04 0.81 0.02

Ethnicity –0.04 0.04 0.33

Total body 
fat (kg)

1.26 0.09 <0.001

Fat free 
mass (kg)

–0.74 0.26 <0.01

Final Model

Sex 0.06 0.04 0.84 0.12

Ethnicity –0.001 0.04 0.99

Total body 
fat (kg)

0.98 0.16 <0.001

Fat free 
mass (kg)

–0.75 0.25 <0.01

SAAT (cm2) 0.37 0.12 <0.01

IAAT (cm2) –0.22 0.14 0.12

a Beta: correlation coeffi cient.

Table 3 Univariate analysis and regression for predicting insulin level (logarithmically transformed)

Univariate analysis Model: all variables entered

Betaa SE P Betaa SE P VIF

Sex 0.23 0.14 0.10 –0.09 0.14 0.52 1.3
Height (cm) 0.04 0.01 <0.001 0.04 0.02 0.04 3.7
Weight (kg) 0.05 0.01 <0.001 –0.01 0.04 0.81 14.1
Fat mass (kg) 0.07 0.02 <0.001 –0.08 0.08 0.33 23.1
Abdominal fat (kg) 0.10 0.02 <0.001 0.45 1.0 0.66 20.7
Sum skinfolds (cm) 0.007 0.002 <0.001 0.04 0.04 0.35 7.6
IGF-I 0.03 0.01 0.007 0.002 0.01 0.82 1.5
Leptin 0.09 0.02 <0.001 0.07 0.04 0.12 4.9

a Beta: correlation coeffi cient.
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are used, the best predictive equation for insulin level from 
our data would include only leptin and height. Both variables 
have positive beta coeffi cients that are consistent with uni-
variate analyses and together the two variables explain 35% of 
the variation in fasting insulin level. Other variables including 
total body fat, abdominal fat and IGF-I levels were excluded 
on the basis of their non-signifi cant P values.

Recommendations
For a sound understanding of how hormones and body 
composition interact, it is important that data are analysed 
carefully. Researchers often invest large resources in conduct-
ing invasive tests of children. In such situations, it is especially 
important that multiple regression models are built with 
great care and that all of the assumptions are met in order to 
prevent errors that lead to misconceptions in understanding. 
In small, multivariate models with instability and collinear-
ity, neither the directions of effect of the coeffi cients or the 

size of the P values have a logical interpretation. Science is a 
search for the truth and until a rigorous approach to building 
multivariate models becomes standard practice, it is unlikely 
that we will come to understand the true relationship between 
hormones and body composition in children.
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Pancreatic elastase 1 (E1) is considered to be a highly 
sensitive and specifi c marker for exocrine pancreatic function, 
allowing the diagnosis of pancreatic insuffi ciency at all ages.1 
After two weeks of life, whatever the gestational age, 96.8% of 
infants without pancreatic disorders exhibit faecal E1 levels 
comparable to those of adults.2 A preliminary study suggested 
decreased faecal E1 levels in infants below 2 weeks of age,3 and 
this prospective study measured faecal E1 in preterm and full 
term newborn infants during the fi rst week of life.

Methods and results
A bicentric prospective study enrolled 42 preterm infants 
(18 girls and 24 boys) born at 28 weeks gestation (median, 
range 25–35 weeks) and weighing 1140 g (range 640–1890), 
including 13 extreme premature infants (<28 weeks gesta-
tion). Controls were 12 full term infants (eight girls and 
four boys) born at term (38–41 weeks) and weighing 3455 g 
(range 2840–4160).

For each child, one to three stool samples (about 5 g) 
were obtained during the fi rst two weeks of life and stored at 
20°C before analysis. The fi rst sample was obtained between 
days 0 and 7 (median 2), the second between days 3 and 9 
(median 5), and the third between days 7 and 11 (median 9). 
Owing to monitoring diffi culties, two stool samples were 
collected for 29 of the 42 premature infants and three for the 

remaining 12. Three stool samples were not collected for any 
of the term infants, as they were discharged at 5 days of age.

Pancreatic E1 levels were determined using a “sandwich” 
type enzyme immunoassay (Schebo-Biotech, Guiessen, 
Germany), using two monoclonal antibodies binding to two 
distinct epitopes specifi c to human pancreatic E1. Results 
were expressed as g/g of stool; 200 g/g was the lower normal 
limit.1 All quantitative results are given as median (range).

Statistical comparisons were performed using the 
non-parametric Mann-Whitney U test. Single regression 
analysis was used to calculate correlation coeffi cients for 
parametric data.

In all newborns, faecal E1 levels increased signifi cantly 
(p<0.0001) from the fi rst to the third sample: 113 (3–600), 
242 (3–600), and 459 (559–600) g/g respectively. E1 levels 
were signifi cantly lower in preterm infants than in full term 
infants at day 2 (89 (3–539) v 354 (52–600) g/g, p<0.0007) 
and day 5 (164 (3–600) v 600 (158–600) g/g, p<0.05) 
(fi g 1). No difference was found between extremely premature 
(74 (3–228) g/g) and premature infants (102 (3–539) g/g) 
(p = 0.58), within the fi rst week of life. All preterm infants 
displayed normal E1 levels from the second week onwards.
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Figure 1 Pancreatic elastase (E1) levels in the two groups of newborn 
infants. Samples 1, 2, and 3 were collected on median day 2, median 
day 5, and median day 9 respectively. Reference concentrations for 
pancreatic E1 in adult stools are: normal,  200 µg/g; moderate to 
light exocrine pancreatic insuffi ciency, 100 to < 200 µg/g; severe 
pancreatic insuffi ciency,  100 µg/g.
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The amount of faecal pancreatic enzyme elastase 1 was signifi cantly lower in 42 preterm newborns than in 12 full term babies at day 2 
(89 (3–539) v 354 (52–600) g/g, p<0.0007) and day 5 (164 (3–600) v 600 (158–600) g/g, p<0.05) and correlated positively with 
total nutrient intake during the fi rst week of life in preterm infants. This should probably be taken into account during early feeding.
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Considering all infants, a positive correlation was observed 
between E1 levels and gestational age in both fi rst week sam-
ples: r = 0.5, p = 0.0001 and r = 0.3, p = 0.03. A positive corre-
lation was also observed between E1 levels in the fi rst sample 
and birth weight: r = 0.5, p = 0.0001.

In preterms, a positive correlation was observed between 
E1 levels in the fi rst sample and total energy (r = 0.47, p = 
0.002), lipid (r = 0.43, p = 0.004), protein (r = 0.45, p = 0.002), 
and carbohydrate (r = 0.47, p = 0.001) intake (fi g 2).

No correlation was found between faecal E1 and any 
of the other clinical parameters of the studied population: 
sex, maternal treatment with steroids, maternal blood hyper-
tension, acute fetal distress, infection, respiratory distress, 
intrauterine growth retardation, necrotising enterocolitis, 
treatment, the day of stool sampling (table 1).

Discussion
Preterm infants have low levels of faecal E1 during the fi rst 
week of life, whereas full term infants do not, suggesting exo-
crine pancreatic immaturity in the former. The benefi cial 
effect of early enteral feeding on pancreatic exocrine function 
is supported by the correlation between faecal E1 increase and 
nutrient intake.

Figure 2 Correlation between faecal elastase 1 (E1) level and nutritional intake in preterm infants in the fi rst sample.
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Table 1 Clinical features of the 42 preterm infants

Preterm infants

Sex (F:M) 18:24

Gestational age (weeks) 28 (25–35)

Birth weight (g) 1140 (640–1890)

Maternal steroids 33 (78%)

Maternal hypertension 11 (26%)

Acute fetal distress 12 (28%)

Infection 8 (19%)

Respiratory distress 39 (93%)

Intrauterine growth retardation 7 (17%)

Necrotising enterocolitis 1 (2.4%)

Steroids 17 (40%)

Sedation 24 (57%)

Inotropes 5 (12%)

Volume expansion 9 (21%)

Insulin 2 (5%)

Feeding 29 (70%)

 Values are median (range).
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normalise within the fi rst days, more rapidly with enteral 
nutrition. This should be taken into account during early 
feeding of preterm infants.
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 Considerable variations in faecal E1 between stool samples 
and from day to day have been described by Hamwi et al. 4 
The fi rst sample was obtained close to birth, according to 
the availability of stools during this period of intensive care. 
This collection may have involved either stool or meconium, 
which is known to contain low E1 levels.2, 5

More than half (52%) of preterm infants still had low 
pancreatic E1 (<200 g/g of stool) at the end of the fi rst week, 
independent of gestational age. Maturation occurs in preterm 
infants as well as in full term babies after the fi rst week of life, 
as described by Terbrack et al 5 and Von Seebach and Henker2: 
after one week of life, 97.4% of term infants (but only 85% of 
preterm babies) had reached adult levels of E1 of  > 200 g/g 
faeces. After the fi rst week of life, E1 concentrations remained 
within the normal adult range. The levels observed during the 
fi rst week of life remained above values currently observed in 
cystic fi brosis (<50 g/g of stool).6

The positive correlation between energy and nutrient 
intakes during the fi rst week of life in preterm infants sup-
ports “minimal enteral feeding” as a strategy for accelerating 
the maturation of gastrointestinal function.7 Digestion of 
nutrients in preterm infants may not be optimal in the fi rst 
week of life, despite increased needs. Therefore, the trend 
to sustain “early aggressive enteral feeding”8 has probably to 
be dealt with taking into account pancreatic immaturity: an 
adaptation of nutrients during the fi rst week seems desirable.

Conclusion
A pancreatic maturation defi cit exists in the fi rst week of life 
in preterm infants, depending on gestational age. E1 levels 
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UNIT 8

Follow-up studies

Aims

To understand how to make within-subject and 
between-group comparisons of outcome measurements 
which have been collected from participants at baseline 
and at the end of a study.

as discussed in Unit 3, and a paired categorical analysis 
called McNemar’s test can be used when the outcome 
measurement is binary.

Learning objectives
On completion of this unit, participants will be able to 
understand how to analyse data from clinical trials and 
longitudinal studies, and:

identify the situations in which an independent    •

samples t-test or a paired t-test is used;
explain the consequences of excessive drop-out rates;   •

interpret analyses in which adjustments are made for    •

unbalanced baseline characteristics;
understand why different    • P values are obtained for 
the same data set when different types of analyses are 
used.

Background

Follow-up studies are used to fi nd out what happens to 
a group of participants over a defi ned period of time. These 
studies may be observational, such as cohort, prospective or 
longitudinal studies, or experimental, such as randomised 
controlled trials or cross-over trials. In such studies, mea-
surements are taken from participants at baseline and at a 
later date to assess the signifi cance of any changes that have 
occurred over time.

In this Unit, we refer to the outcome measurement at 
the end of a study as a ‘follow-up score’, and the within-
participant difference between baseline and follow-up 
measures as a ‘change score’. The analyses described in this 
Unit apply to continuously distributed measurements only, 
but the same principles can be applied to the  analysis of 
categorical data. For categorical data, chi-square tests can 
be used for independent between-group comparisons, 

Glossary

Term Defi nition

Observational 
study

A study which is conducted to measure 
rates of disease in a population or to 
measure associations between exposures 
(risk factors) and disease. 

Experimental 
study

A study which is conducted to test the 
effect of a treatment or intervention.

Randomised 
controlled 
trial

A study which is conducted to measure 
whether a new treatment is superior or 
equivalent to no treatment or an existing 
treatment, and in which participants are 
randomly allocated to the study groups.

Cross-over 
trial

A study in which participants receive two 
or more treatments given consecutively, 
usually in a random order. The response to 
the fi rst treatment can be contrasted 
with the response to the second treatment 
in the same participants. 

Paired t-test A test to measure whether the means of 
two related continuous measurements 
are different from one other, typically 
measurements taken from the same 
participants on two occasions.

Follow-up studies with no between-group 
comparison
In studies without a between-group comparison, a paired 
t-test is used to estimate whether the baseline and follow-up 
measurements, which are expected to be related because 
they are collected from the same participant, are signifi cantly 
different from one another. Paired t-tests are used in obser-
vational cohort studies and in experimental cross-over trials 
in which participants are randomised to receive active and 
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control treatments in random order. In cohort studies, the 
outcome of interest is how much change occurs in the study 
group over time. In cross-over trials, the outcome of inter-
est is whether the participants improve more when taking 
the experimental treatment than when taking the control 
treatment. In both types of studies, we are interested in the 
mean within-subject difference, unlike comparisons of inde-
pendent samples (see Unit 6) in which we are interested in 
the mean between-group difference. In critically appraising 
the literature, it is important to identify what the term ‘mean 
difference’ actually describes.

In follow-up studies in which no comparison is being 
made between two groups, the outcome of interest is 
whether participants change signifi cantly over time. In such 
studies, patients form their own control group. Thus, the 
mean within-subject difference between the baseline and 
follow-up measurements, that is, the mean change score, is 
the summary statistic of interest. For this, a paired t-test is 
the appropriate statistic to use.

When using a paired t-test, the within-subject variation for 
the participants is of most interest and the between-subject 
variation, which is considered when using an independent 
samples t-test, is of little interest. In effect, a paired t-test is 
used to assess whether the mean change score between the 
two related measurements is signifi cantly different from 
zero – the value that indicates no change. The assumption for 
using a paired t-test is that the differences between the pairs 
of measurements (the change scores) rather than the mea-
surements themselves are normally distributed. This assump-
tion should be tested using a histogram or other summary 
statistics before the t-test is performed.

Paired t-tests are used in cross-over trials in which the 
outcome of interest is within-participant improvement 
for the new treatment period compared to the control or 
standard treatment period. For example, a paired t-test was 
used in a cross-over trial in which 48 people with chronic 
obstructive pulmonary disease were enrolled to test the 
effi cacy of sustained release morphine compared to placebo 
for treating symptoms of dyspnoea (breathlessness).1 During 
the study, the participants made twice daily ratings of their 
dyspnoea severity on a visual analogue scale, with the range 
of scores from zero (no breathlessness) to 100 (worst possible 
breathlessness). The design of the study involved participants 
receiving four days of the treatment and also four days of the 
placebo, the order of which was randomised. The authors 
report that a washout period (a period when the treatment is 
withdrawn so that any effects of the treatment are no longer 
present) between treatment arms was not required because a 
steady treatment state was reached in each arm by 60 hours. 
Thus, the authors made an a priori decision to compare 
follow-up scores at the end of each treatment period rather 
than change scores between the beginning and end of 
each treatment period. This method is recommended as an 
alternative to using a washout period to reduce the carry 

over effect, that is, the effect of the fi rst treatment carrying 
over into the second treatment period.2 To evaluate treat-
ment effects, paired t-tests were used in an intention to 
treat analysis to evaluate between-treatment differences for 
each of the morning and evening dyspnoea scores. A sum-
mary of the study results with corrected mean values are 
shown in Table 8.1.

In both time periods, the mean follow-up dyspnoea 
score when participants were receiving morphine was 
approximately 7–9 points lower than when participants were 
receiving the placebo treatment. The mean change score 
was 6.6 for the morning period and 9.5 for the evening period. 
The P values shown in Table 8.1 are derived from paired 
t-tests. Both differences were statistically signifi cant and this 
is refl ected by the 95% confi dence intervals around the mean 
differences which do not cross the value of zero. Thus, both 
the P values and confi dence intervals indicate a difference 
between treatment phases, that is, that morphine was more 
effective than the placebo for reducing breathlessness.

Independent sample t-tests cannot be used for analysing 
paired data such as this, because the assumption that the 
observations are independent would be violated. In addi-
tion, treating paired measurements as independent sam-
ples would artifi cially infl ate the sample size and lead to an 
inaccurate estimate of P values. In Table 8.1, the effective 
sample size is the number of participants, that is N = 38, and 
not the number of outcome measurements, that is N = 76, 
because the outcome in each participant was measured twice.

Although paired t-tests are an effective way to analyse 
follow-up data, drop-outs can be a major problem because 
participants with missing values cannot be included in 
the analysis. In practice, missing data reduce both the study 
power and the generalisability of results, and therefore it is 
important to have methods in place to ensure that drop-
out rates are minimised in clinical trials and observational 
follow-up studies.

Follow-up studies with a between-group 
comparison
In many longitudinal studies we are interested in how much 
one group changes compared to another group. Randomised 
controlled trials are often longitudinal in nature in that 

Table 8.1 Effect of morphine versus placebo on ratings of 
dyspnoea at the end of each treatment period in 38 participants 
with chronic obstructive pulmonary disease

Morphine 
mean (SD)

Placebo 
mean (SD)

Mean difference 
(95% CI) P value

Morning 40.1 (24) 46.7 (26) 6.6 (1.6, 11.6) 0.011
Evening 40.3 (23) 49.8 (24) 9.5 (3.0, 16.1) 0.006
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both baseline and follow-up outcome measurements are 
collected from participants allocated to either an intervention 
or control treatment. In this type of study, we are interested 
in whether participants in the intervention group do  better 
than participants in the control group after a set period of 
time. For this, an independent samples t-test can be used to 
assess the signifi cance of the between-group difference in 
mean follow-up scores at the end of the trial. Alternatively, 
follow-up scores can be compared using regression to adjust 
for baseline values. Another method to take account of the 
longitudinal nature of the data is to calculate change scores 
(the difference between baseline and follow-up scores) and 
use an independent samples t-test to assess whether the 
within-subject change over time is signifi cantly different 
between the two groups.

In studies with a follow-up component, the between-group 
comparison can be assessed in three different ways. Below, 
we use an example of a randomised controlled trial in which 
a control and an intervention group was enrolled to show 
how the three different methods can be applied. However, 
the principles can be extended to observational studies or to 
studies in which three or more groups are compared.

whether enjoyment of exercise could be improved with taught 
sporting skills. Thus, the primary outcome measurement 
was enjoyment of exercise as measured using a standardised 
questionnaire at baseline and at follow-up, which was three 
months later. The possible range of the scores was from 
zero (no enjoyment) to eighty (total enjoyment).

Table 8.2 shows the mean baseline and follow-up 
enjoyment scores. The intervention group had a mean 
enjoyment score that was 1.1 points higher than the control 
group at baseline. This type of baseline imbalance is more 
common in trials with a small number of participants in 
each group than in larger trials in which chance tends to 
balance groups more evenly.

Because the participants were randomised to their study 
group, it does not make sense to use a statistical test to assess 
whether the baseline enjoyment scores are different between 
the groups. Running this type of statistical test would equate 
to testing a null hypothesis that there is no difference in base-
line characteristics between groups, and would merely be 
testing whether the randomisation procedure was effective.3 
However, the hypothesis that there is no difference between 
the groups at follow-up can be tested using an independent 
samples t-test. Table 8.2 shows that the active intervention 
group had a mean follow-up score which was, on average, 
5.1 points higher than in the control group, with a 95% con-
fi dence interval of 0.9 to 11.2 points. This confi dence inter-
val just crosses the zero line as shown in the bottom plot of 
Figure 8.1. The P value is low but is not signifi cant at 0.10.

Comparing change scores
A second way to analyse the data from this trial would be 
to compare change scores, that is, the difference between 
follow-up and baseline measurements in each participant. 
Again, these scores can be compared using an independent 
samples t-test as shown in Table 8.3.

Table 8.3 shows that enjoyment increased from  baseline 
to follow-up in both groups as indicated by a positive 
mean change score. Enjoyment increased by an average of 
2.4 points in the control group and 6.4 points in the inter-
vention group. The mean between-group difference shows 
that the change scores increased, on average, by 4.0 points 
more in the intervention group than in the control group 
with a 95% confi dence interval of 1.4 to 9.4. As shown in 
Figure 8.1, this confi dence interval crosses the zero line of 
no difference to a slightly greater extent than the confi dence 

TAKE HOME LIST

The three different methods to analyse data from studies in 
which follow-up measurements are collected and a between-
group comparison is being made are:

to compare the mean follow-up scores between groups;• 

to compare the mean change scores between groups;• 

to compare the follow-up scores between groups after • 
adjusting for baseline scores.

Comparing follow-up scores
The simplest type of analysis is to compare the mean 
follow-up scores between groups. For example, in an unpub-
lished randomised controlled trial, overweight primary school 
children were randomised to a control group who received 
a walking programme (N = 21) or to an intervention group 
who received an active skills teaching programme (N = 20). 
Both groups received their programme twice weekly for a 
period of eight weeks. The aim of the trial was to measure 

Table 8.2 Baseline and follow-up measures of enjoyment in a randomised controlled trial in 41 overweight primary school children

Time Group Mean (SD) Mean difference (95% CI) t value P value

Baseline Control 
Intervention

47.2 (11.1) 
48.3 (11.7)

— — —

Follow-up Control 
Intervention

49.6 (10.4) 
54.7 (8.9)

5.1 (0.9, 11.2) 1.69 0.10
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interval for the follow-up scores. As a result the P value is 
higher, and slightly less signifi cant, with a value of 0.14.

It is problematic when two different statistical tests 
from the same data provide different estimates of effect and 
different P values. The difference in P values between the 
analyses occurs because of the difference in baseline scores 
between the two groups.4

If baseline scores are lower in the control group, as they 
are in Table 8.2, comparing follow-up scores may lead to an 
under-estimation of the treatment effect.4 In practice, par-
ticipants who have extremely low or high scores will have less 
extreme scores the next time they are measured. Therefore, 
the mean of these participants at follow-up will be reduced. 
This is known as regression to the mean and is a statistical 
occurrence.5 Regression to the mean occurs because the fi rst 
and second measurement will not be perfectly correlated.5 If 
baseline scores are lower in the control group and regression 
to the mean occurs, both the mean follow-up and change 
scores between the groups will seem more alike and the treat-
ment effect will be under-estimated compared to when the 
baseline scores are balanced.

In general, less variability in each group decreases the 
standard deviation and increases the effect size between 
groups for the same mean difference and conversely, more 
variability in each group increases the standard deviation 
and decreases the effect size. If the correlation between the 
baseline and follow-up scores is low, say less than 0.4, the 
change score will have more variability than the follow-up 
score and the P value is less likely to be statistically 
signifi cant than if the follow-up score is used. On the other 

hand, if the correlation between baseline and follow-up 
scores is high, say over 0.80, then the change score will reduce 
variability and the P value is more likely to be signifi cant 
than if the follow-up score is used.4 For the results shown 
in Tables 8.2 and 8.3, the correlation between baseline and 
follow-up scores was moderate at 0.7 and therefore the sig-
nifi cance for the between-group differences in follow up and 
change scores was similar at P = 0.10 and 0.14 respectively, 
with neither being statistically signifi cant.

Adjusting for baseline differences
The third method of analysing the data is to adjust for 
baseline differences using a regression model. In a ran-
domised controlled trial, baseline differences are a bias that 
has occurred by chance. By using regression, the effect of 
the baseline differences can be minimised. However, the 
decision of whether to adjust for baseline differences in 
the analyses needs to be made before the data are analysed. 
Neither hypothesis testing nor visually inspecting the base-
line statistics after the study is completed is a good method 
to decide whether to use regression. Ideally, a decision 
about the method of data analysis should be made before 
the study is conducted. In making decisions about what 
factors to adjust for, baseline values that might have prog-
nostic value should be identifi ed on the basis of available 
evidence from other sources at the beginning of the study 
or while the study is in progress.6 Once decided a priori, 
regression can then be used to remove the infl uence of the 
baseline imbalance on the study result.

In Figure 8.2, follow-up enjoyment scores from the 
example are plotted against the baseline scores and the line 
of identity. The fi gure shows that all of the children with 
a baseline score of less than approximately 44 improved 
in that their follow-up score is above the line of identity. 

Table 8.3 Mean change scores and mean within-subject 
difference in enjoyment in a randomised controlled trial in 
overweight primary school children

Control group 
Mean (SD)

Intervention group 
Mean (SD) 

Mean difference 
(95% CI)

P value

2.4 (7.7) 6.4 (9.6) 4.0 (1.4, 9.4) 0.14

Mean between-group difference and 95% CI

−4 −2 0 2 4 6 8 10 12

Change score

Follow-up score

Figure 8.1 Mean within-group differences in enjoyment scores.

Figure 8.2 Follow-up scores for enjoyment plotted against 
baseline scores and shown with the line of identity.
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On the other hand, in children who had a baseline score 
above 44, approximately 50% improved their score and 
50% decreased their score –although the improvements are 
generally larger than the decreases.

The method of using regression to adjust for a continu-
ous explanatory variable, in this case baseline score, and to 
test for a group difference, was discussed in Unit 7. In this 
analysis, the follow-up score is the outcome and the base-
line score and the group are the explanatory variables. This 
method is also called analysis of covariance (ANCOVA) – 
the mathematics of ANCOVA and of regression, with one 
continuous explanatory variable and one binary group 
variable, are identical. By using regression, the follow-up 
scores of participants are adjusted for their baseline score 
and then an independent t-test is conducted to assess 
whether there is a signifi cant between-group difference in 
the adjusted follow-up score. This method has the advantage 
that if the correlation between the baseline and follow-up 
scores is less than 0.8, it maximises statistical power to 
show a treatment effect. However, as with all multivariate 
analyses, the model should be built carefully, especially if 
further covariates are added, and all of the assumptions for 
regression that were discussed in Unit 7 need to be met.

For the data shown in Figure 8.2, the regression 
equation is:

Enjoyment at follow-up 
 = 22.7 + 0.7 × Enjoyment at baseline 
    + 4.5 for intervention group

This indicates that, after adjusting for baseline differences, 
the intervention group had a follow-up score that was, on 
average, 4.5 units higher than the control group. The 95% 
confi dence interval around this mean value is 0.1 to 9.1, 
which now only marginally crosses the zero line of no 
difference. Refl ecting this, the P value is on the margin of 
signifi cance at 0.05. This P value is more signifi cant than 
the independent samples t-tests used to compare follow-up 
scores (P = 0.10) and change scores (P = 0.14) showing the 
additional statistical power that this method of analysis 
may provide.

When the regression lines are plotted against the line of 
identity as shown in Figure 8.3, they convey the fi nding that 
children in the intervention group have, on average, follow-up 
scores that are 4.5 units higher than children in the control 
group. The slopes of the lines also confi rm the observation 
that children with lower baseline scores improved more than 
children with higher baseline scores. That is, regression to the 
mean has occurred and the size of improvement is larger for 
participants with lower baseline scores. The control group 
line crosses the line of identity at an enjoyment score of just 
over 50, showing no mean improvement above this score in 
this group. This type of fi gure is a nice way to convey the esti-
mate of effect in graphical form and to demonstrate when 
regression to the mean occurs.

Comparison of methods
The mean difference between the groups and the P values 
obtained from the three different methods of analysis are 
summarised in Table 8.4. In essence, the three methods pro-
vide slightly different results because they are addressing 
slightly different questions.7

The fi rst analysis with follow-up scores answers the 
question of whether the two groups are different at the end 
of the study, without adjusting for any initial  differences 
at the beginning of the study. In both the second and 
third analyses, an adjustment for initial baseline scores is 
made. The second analysis with change scores answers the 
question of whether there is any difference between groups 
in the average change over the course of the study. The third 
analysis answers a slightly different question of whether there 
is any difference in the expected change between two groups 
who have the same baseline scores.

Obviously, framing the research question in a way that 
is congruent with the aims of the study is important and 
the most appropriate analysis should be decided when 
the study is designed, that is, a priori. The difference in 
P  values results from the correlation between the baseline 
and follow-up scores and the number of people with higher 
or lower values in each group who may regress to the mean. 

Figure 8.3 Regression lines for predicting enjoyment at 
follow-up compared against the line of identity.
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Table 8.4 Results obtained using three different methods of 
data analysis for follow-up studies

Method Mean difference P value

1. Follow-up scores 5.1 (0.9, 11.2) 0.10
2. Change scores 4.0 (1.4, 9.4) 0.14
3. Regression 4.5 (0.1, 9.1) 0.05
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When there is a reasonable correlation between the baseline and 
follow-up scores, regression provides more statistical power to 
show a between-group difference. However, the scientifi c ques-
tion of interest, and not issues of statistical precision, should be 
used to decide which type of analysis will be used.7

Reading and questions
Reprint
Vickers AJ, Altman DG. Analysing controlled trials with 
baseline and follow up measurements. BMJ 2001;323:
1123–1124. (See p. 118.)

The reprint by Vickers and Altman (2001) discusses some 
important issues in the analysis of follow-up data from 
randomised controlled trials. After reading the reprint 
answer the following questions:

If baseline and follow-up data are collected from an interven-1 
tion and control group in a clinical trial, what statistics can be 
used to decide if the intervention was effective at follow-up?
In what situations are change scores poor at controlling 2 
for baseline imbalance?
If the follow-up measurement is highly correlated with 3 
the baseline measurement, how will the result of the t-test 
to compare follow-up scores be different from that of the 
t-test to compare change scores?
If there is a low correlation between the baseline measure-4 
ment and the follow-up measurement, will the P value for 
the change scores be more signifi cant or less signifi cant 
than the P value for the follow-up scores and why?
If the mean baseline measurement in the intervention 5 
group is higher than in the control group, will the P value 
for the change scores be higher or lower than if the 
baseline measurements were balanced between groups?

Worked example
Set article
Fairbank J, Frost H, Wilson-MacDonald J, Yu L, Barker K, 
Collins R and for the Spine Stabilisation Trial Group. 

Randomised controlled trial to compare surgical 
stabilisation of the lumbar spine with an intensive reha-
bilitation programme for patients with chronic low back 
pain: the MRC spine stabilisation trial. BMJ 2005;330. 
(See p. 120.)

In the set article, Fairbank et al. (2005) compare differ-
ences in the disability index and other indices of back 
pain in patients with chronic low back pain who under-
went a surgical lumbar spine fusion (N = 176) or who 
attended an intensive rehabilitation programme (N = 173). 
At baseline and 24 months following the intervention, out-
come data on the disability index, walking tests and qual-
ity of life were collected from patients. The primary and 
secondary study outcomes are shown in Table 4 in the 
set article.

In Table 4, the authors present mean follow-up scores, 
a mean change score and a P value based on analysis of 
covariance. The means and standard deviations of the 
follow-up scores for four outcomes are summarised in 
Table 8.5. If we wanted to interpret the data based on the 
follow-up scores, the means and their standard deviations 
can be used to calculate the mean between-group difference, 
effect size, 95% confi dence interval, independent samples 
t value and P value. Using the formulas provided in Unit 6, 
complete Table 8.5, using the pooled standard deviation in 
the calculations.

After completing Table 8.5, answer the following questions:
What does a negative effect size mean? •

Do the  • P values refl ect the effect size between 
the groups?
Do any of the  • P values suggest that a type II error has 
occurred?
How do the  • P values that you have computed 
compare with the P values in Table 4 of Fairbank 
et al. (2005)? Can you explain why they are 
higher or lower?
Do you agree with the authors’ interpretation of  •

their data?

Table 8.5 Mean outcome values at follow-up, effect size and mean difference

Outcome

Surgery group 
Mean (SD) 
(n = 176)

Rehabilitation group 
Mean (SD) 
(n = 173)

Effect size 
(SDs)

Mean difference 
(95% CI) t-value P value

Disability index (n = 138) (n =146)
34.0 (21.1) 36.1 (20.6) 0.1 2.1 (7.0, 2.8, 4.4) 0.85 0.40
(n = 118) (n =126)

Shuttle walk 352 (244) 310 (202)
(n = 115) (n =131)

SF-36 physical 28.8 (14.9) 27.6 (14.6)
SF-36 mental 47.4 (12.2) 48.1 (12.6)
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Critical appraisal

Work through the critical appraisal checklist to review 
the paper by Fairbank et al. (2005) and other reported 
follow-up studies to decide whether the results and the con-
clusions are valid and justifi ed.

Quick quiz

Tick the correct answer for each of the following questions.

The mean within-subject difference is a term used to 1 
describe:

the mean change score in the participants;(a) 

the difference in mean values between the two study (b) 
groups;

the mean of the difference in the outcome value (c) 
between study groups;

the mean difference in follow-up scores.(d) 

A low correlation between baseline and follow-up scores 2 
indicates that an independent samples t-test using change 
scores is likely to be:

infl uenced by unequal variances;(a) 
more signifi cant than for a test using follow-up (b) 

scores;
less signifi cant than for a test using follow-up (c) 

scores;
an incorrect test to use.(d) 

Critical appraisal checklist for an article that reports follow-up data 

Study designA. 

Is the follow-up rate suffi cient to warrant making conclusions 1. 
about long-term effects?

If two groups are involved are the groups independent, that is, each 2. 
person is in one group only?

Are there suffi cient participants to warrant using an independent 3. 
samples t-test or a paired t-test?

Statistical methodsB. 

If a paired 4. t-test is used, is there evidence that the change 
scores are normally distributed?

Do the baseline data suggest that within-subject change 5. 
scores need to be standardised for baseline differences?

If the change scores are not normally distributed, has a 6. 
non-parametric test been used?

ResultsC. 

Is it clear whether the mean differences and 95% confi dence 7. 
intervals reported are within-subject or between-group estimates?

Are mean within-subject change scores reported if a paired 8. 
t-test is used?

InterpretationD. 

Is the drop out rate low enough so that both the generalisability of 9. 
results and the statistical power are maintained?

Is there any evidence that the 10. P values reported may be biased?

If there is bias, is it likely that any differences within-subjects or 11. 
between-groups have been under-estimated or over-estimated?

Can any of the results be described as type I or type II errors?12. 
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A high correlation between baseline and follow-up scores 3 
indicates that an independent samples t-test using change 
scores is likely to be:

biased;(a) 
more signifi cant than for a test using follow-up (b) 

scores;
less signifi cant than for a test using follow-up (c) 

scores;
an incorrect test to use.(d) 

Regression to the mean indicates that participants out-4 
come scores:

can be predicted from a regression (a) 
equation;

are likely to get worse than expected;(b) 
are likely to improve more than expected;(c) 
are likely to change towards the mean value.(d) 
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In many randomised trials researchers measure a continuous 
variable at baseline and again as an outcome assessed at follow 
up. Baseline measurements are common in trials of chronic 
conditions where researchers want to see whether a treatment 
can reduce pre-existing levels of pain, anxiety, hypertension, 
and the like.

Statistical comparisons in such trials can be made in several 
ways. Comparison of follow up (post-treatment) scores will 
give a result such as “at the end of the trial, mean pain scores 
were 15 mm (95% confi dence interval 10 to 20 mm) lower in 
the treatment group.” Alternatively a change score can be cal-
culated by subtracting the follow up score from the baseline 
score, leading to a statement such as “pain reductions were 
20 mm (16 to 24 mm) greater on treatment than control.” 
If the average baseline scores are the same in each group the 
estimated treatment effect will be the same using these two 
simple approaches. If the treatment is effective the statistical 
signifi cance of the treatment effect by the two methods will 
depend on the correlation between baseline and follow up 
scores. If the correlation is low using the change score will 
add variation and the follow up score is more likely to show a 
signifi cant result. Conversely, if the correlation is high using 
only the follow up score will lose information and the change 
score is more likely to be signifi cant. It is incorrect, however, 
to choose whichever analysis gives a more signifi cant fi nd-
ing. The method of analysis should be specifi ed in the trial 
protocol.

Some use change scores to take account of chance imbal-
ances at baseline between the treatment groups. However, 
analysing change does not control for baseline imbalance 
because of regression to the mean1, 2: baseline values are nega-
tively correlated with change because patients with low scores 
at baseline generally improve more than those with high 
scores. A better approach is to use analysis of covari-
ance (ANCOVA), which, despite its name, is a regression 

method.3 In effect two parallel straight lines (linear regres-
sion) are obtained relating outcome score to baseline score 
in each group. They can be summarised as a single regression 
equation:

follow up score = constant + a   baseline score + b   group

where a and b are estimated coeffi cients and group is a binary 
variable coded 1 for treatment and 0 for control. The coef-
fi cient b is the effect of interest—the estimated difference 
between the two treatment groups. In effect an analysis of 
covariance adjusts each patient’s follow up score for his or her 
baseline score, but has the advantage of being unaffected by 
baseline differences. If, by chance, baseline scores are worse 
in the treatment group, the treatment effect will be under-
estimated by a follow up score analysis and overestimated by 
looking at change scores (because of regression to the mean). 
By contrast, analysis of covariance gives the same answer 
whether or not there is baseline imbalance.

As an illustration, Kleinhenz et al randomised 52 patients 
with shoulder pain to either true or sham acupuncture.4 
Patients were assessed before and after treatment using 
a 100 point rating scale of pain and function, with lower 
scores indicating poorer outcome. There was an imbalance 
between groups at baseline, with better scores in the acu-
puncture group (see table). Analysis of post-treatment scores 
is therefore biased. The authors analysed change scores, but 
as baseline and change scores are negatively correlated (about 
r = 0.25 within groups) this analysis underestimates the 
effect of acupuncture. From analysis of covariance we get:

follow up score = 24 + 0.71  baseline score + 12.7  group

(see fi gure). The coeffi cient for group (b) has a useful inter-
pretation: it is the difference between the mean change scores 
of each group. In the above example it can be interpreted 
as “pain and function score improved by an estimated 12.7 
points more on average in the treatment group than in the 
control group.” A 95% confi dence interval and P value 
can also be calculated for b (see table).5 The regression equa-
tion provides a means of prediction: a patient with a baseline 
score of 50, for example, would be predicted to have a follow 
up score of 72.2 on treatment and 59.5 on control.

An additional advantage of analysis of covariance is that 
it generally has greater statistical power to detect a treatment 
effect than the other methods.6 For example, a trial with a 
correlation between baseline and follow up scores of 0.6 that 
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required 85 patients for analysis of follow up scores, would 
require 68 for a change score analysis but only 54 for analysis 
of covariance.

The effi ciency gains of analysis of covariance compared 
with a change score are low when there is a high correlation 
(say r > 0.8) between baseline and follow up measurements. 
This will often be the case, particularly in stable chronic con-
ditions such as obesity. In these situations, analysis of change 
scores can be a reasonable alternative, particularly if restricted 
randomisation is used to ensure baseline comparability 

between groups.7 Analysis of covariance is the preferred gen-
eral approach, however.

As with all analyses of continuous data, the use of analy-
sis of covariance depends on some assumptions that need to 
be tested. In particular, data transformation, such as taking 
logarithms, may be indicated.8 Lastly, analysis of covariance 
is a type of multiple regression and can be seen as a special 
type of adjusted analysis. The analysis can thus be expanded 
to include additional prognostic variables (not necessarily 
continuous), such as age and diagnostic group

We thank Dr J Kleinhenz for supplying the raw data from his 
study.
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Pretreatment and post-treatment scores in each group showing fi tted 
lines. Squares show mean values for the two groups. The estimated 
difference between the groups from analysis of covariance is the 
vertical distance between the two lines.
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Results of trial of acupuncture for shoulder pain4

Pain scores (mean and SD)

Placebo group (n = 27) Acupuncture group (n = 25) Difference between means (95% CI) P value

Baseline 53.9 (14) 60.4 (12.3) 6.5
Analysis
 Follow up 62.3 (17.9) 79.6 (17.1) 17.3 (7.5 to 27.1) 0.0008
 Change score* 8.4 (14.6) 19.2 (16.1) 10.8 (2.3 to 19.4) 0.014
 ANCOVA 12.7 (4.1 to 21.3) 0.005

*Analysis reported by authors.4
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Introduction
Chronic low back pain is a common cause of distress 
and results in considerable personal and public fi nancial 
 consequences. Management is mostly non-operative, but 

spinal fusion has been used for nearly 90 years. Spinal fusion 
rates vary between and within countries.1 In England about 
1000 lumbar fusions are performed per year.2 An almost 
direct relation exists between the numbers of operations 
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Abstract
Objectives To assess the clinical effectiveness of surgical stabilisation (spinal fusion) compared with intensive rehabilitation 
for patients with chronic low back pain.
Design Multicentre randomised controlled trial.
Setting 15 secondary care orthopaedic and rehabilitation centres across the United Kingdom.
Participants 349 participants aged 18–55 with chronic low back pain of at least one year’s duration who were considered 
candidates for spinal fusion.
Intervention Lumbar spine fusion or an intensive rehabilitation programme based on principles of cognitive behaviour 
therapy.
Main outcome measure The primary outcomes were the Oswestry disability index and the shuttle walking test  measured 
at baseline and two years after randomisation. The SF-36 instrument was used as a secondary outcome measure.
Results 176 participants were assigned to surgery and 173 to rehabilitation. 284 (81%) provided follow-up data at 
24 months. The mean Oswestry disability index changed favourably from 46.5 (SD 14.6) to 34.0 (SD 21.1) in the surgery 
group and from 44.8 (SD14.8) to 36.1 (SD 20.6) in the rehabilitation group. The estimated mean difference between the 
groups was –4.1(95% confi dence interval –8.1 to –0.1, P = 0.045) in favour of surgery. No signifi cant differences between 
the treatment groups were observed in the shuttle walking test or any of the other outcome measures.
Conclusions Both groups reported reductions in disability during two years of follow-up, possibly unrelated to the 
interventions. The statistical difference between treatment groups in one of the two primary outcome measures was 
marginal and only just reached the predefi ned minimal clinical difference, and the potential risk and additional cost of 
surgery also need to be considered. No clear evidence emerged that primary spinal fusion surgery was any more benefi cial 
than intensive rehabilitation.

Peat_Unit 8_Fairbank.indd   120Peat_Unit 8_Fairbank.indd   120 6/12/2008   2:14:34 PM6/12/2008   2:14:34 PM



Originally published in BMJ 2005; 330. Reproduced with permission.

UNIT 8  Follow-up studies   121

performed each year and of orthopaedic and neurosurgeons 
per head of population.3 In the United States, spinal fusions 
for “degenerative changes” rose sharply from around 11 000 
operations per year in 1996 to 37 000/year in 2001 (a 336% 
increase).4 Both the rationale and the techniques used to fuse 
the spine have been questioned.5 Multi-disciplinary reha-
bilitation programmes that focus on physical, psychologi-
cal, social, and occupational factors have been advocated for 
patients with chronic pain of the low back.6–8

This trial was conceived in response to the identifi cation of 
weak evidence for surgery as a priority by the NHS standing 
group on health technology in 1994.9, 10 The pragmatic trial 
was designed to compare two treatment strategies (spinal 
stabilisation surgery or intensive rehabilitation) for patients 
considered by surgeons to be candidates for surgical stabilisa-
tion of the lumbar spine.

Methods
This multicentre, randomised trial was set in 15 hospitals in 
the United Kingdom. Only consultant surgeons with training 
and expertise in performing spinal fusions participated. We 
approached an additional 39 centres where either the surgeon 
was unwilling to recruit patients or implementation of the 
intensive rehabilitation programme was impossible.

Eligibility criteria
We used the uncertainty of outcome principle to defi ne our 
entry criteria and therefore depended on the current prac-
tice of many experienced spine surgeons and their patients.11 
Patients who were candidates for surgical stabilisation of the 
spine were eligible if the clinician and patient were uncertain 
which of the study treatment strategies was best. Patients had 
to be aged between 18 and 55, with more than a 12 month 
history of chronic low back pain (with or without referred 
pain) and irrespective of whether they had had previous root 
decompression or discectomy.

Patients were ineligible if the surgeon considered that any 
medical or other reasons made one of the trial interventions 
unsuitable. These included infection or other  comorbidities 
(infl ammatory disease, tumours, fractures), psychiatric 
disease, inability or unwillingness to complete the trial ques-
tionnaires, or pregnancy. If patients had had previous surgical 
stabilisation surgery of the spine they were also excluded.

Objectives
The aim was to determine whether surgical stabilisation of 
the spine (by fusion or fl exible stabilisation) was more or less 
effective at achieving worthwhile relief of symptoms over a 
two year period than an intensive rehabilitation programme 
based on principles of cognitive behaviour therapy.

Outcome measures
We assessed outcomes at baseline and 6, 12, and 24 months 
from randomisation by a trial research therapist in each 
centre. If the patient was unable to attend the follow-up 
appointments we mailed the questionnaire. We approached 

non-responders by phone, through their family doctor, and 
via national databases.

Primary outcome
The two primary measures at 24 months included a back pain 
specifi c questionnaire and a standardised walking test. The 
Oswestry low back pain disability index is scored from 0% 
(no disability) to 100% (totally disabled or bedridden) and 
designed to assess limitations of various activities of daily liv-
ing.12, 13 The shuttle walking test is a standardised, progressive, 
maximal test of walking speed and endurance.14–16

Secondary outcomes
The short form 36 general health questionnaire (SF-36) 
includes 35 items summarised in two measures related 
to physical and mental health. Each scale ranges from 0 
(worst health state) to 100 (best health state). The summary 
measures are transformed to give a population mean of 
50 (SD 10). The SF-36 is recommended as an outcome 
assessment for spinal disorders because it provides strong 
psychometric support and extensive normative data.

Psychological assessment—We used the distress and risk assess-
ment method (DRAM), which includes the modifi ed Zung 
depression index and somatic perception questionnaire, to 
assess anxiety and depression.17

Complications—We recorded the intraoperative use of anaes-
thetic agents, implants, and radiological investigations; com-
plications of surgery and any adverse effects of rehabilitation; 
postoperative complications, implant failure and repeat sur-
gery; and personal items and devices purchased by the patient 
because of lower back pain. Work status was monitored. We 
recorded “obvious pseudoarthrosis” only where it was clear to 
the treating surgeon that fusion had failed and that this was a 
problem to the patient.

Sample size
We used the Oswestry disability index to determine the 
 sample size. The trial was designed to be able to detect a 
difference in mean score between the intervention groups of 
as little as 4 points.12, 13 We estimated that 133 subjects would 
be required in each group to detect such a difference at the 
 = 0.05 level with 80% power. We initially planned to recruit 
at least this number of patients in each of three separate 
clinical groups to allow reliable subgroup analysis, but most 
of the patients were recruited in one clinical category.

Interventions
Spinal stabilisation surgery—The particular technique used 
for spinal fusion was left to the discretion of the operating 
surgeon. This allowed choice of the most appropriate sur-
gical approach, implant (if any), interbody cages, and bone 
graft material for that patient. A small number of surgeons 
used fl exible stabilisation of the spine (the Graf or Global 
technique). This was recorded for each patient before 
randomisation.
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Intensive rehabilitation programme—Each centre was 
 modelled on a daily outpatient programme of education 
and exercise running on fi ve days per week for three weeks 
continuously. Further details of the programme are reported 
elsewhere.15 Most centres offered 75 hours of intervention 
(range 60–110 hours), with one day of follow-up sessions at 
one, three, six, or 12 months after treatment. The rehabilita-
tion programmes were led by physiotherapists but included 
clinical psychologists in all but one centre, as well as medi-
cal support. The daily exercises were individually tailored and 
paced to increase repetitions and duration, aiming to build 
on the participants’ baseline ability. They included stretching 
of major muscle groups, spinal fl exibility exercises, general 
muscle strengthening, spine stabilisation exercises, and car-
diovascular endurance exercise using any mode of aerobic 
exercise (treadmill walking, step-ups, cycling, rowing). All 
but one centre included daily sessions of hydrotherapy. We 
used principles of cognitive behaviour therapy to identify 
and overcome fears and unhelpful beliefs that many patients 
develop when in pain.

Treatment allocation and recruitment
Surgeons approached patients who were candidates for  spinal 
fusion. Each centre employed a trial research therapist to 
organise the trial locally, recruit patients, book treatment 
appointments, and carry out assessments. Patients were given 
verbal, written, and videotape (OMI, Oxford) explanations 
of the background and nature of the trial. The trial research 
therapists obtained written consent and carried out baseline 
assessments before randomisation.

Randomisation was generated centrally by computer 
program, with minimisation for various potential confound-
ing factors: age, smoking, litigation, Oswestry score, clinical 
classifi cation, and planned use of the Graf procedure.

Statistical methods
We carried out an intention to treat analysis. We used analysis 
of covariance (ANCOVA) to analyse quantitative outcomes at 
24 months, with corresponding baseline values and treatment 
group as covariates.

We used multiple imputation to handle missing data. To 
impute the missing data we constructed multiple regres-
sion models including variables potentially related to the 
fact that the data were missing and also variables correlated 
with that outcome. We used Stata (StataCorp, College Station, 
Texas, USA)18 and PROC MI in SAS (SAS Institute, Cary, 
NC, USA) to obtain similar answers, and only the former 
are presented.

Results
A total of 349 patients were randomised between June 1996 
and February 2002 from 15 centres in the UK (176 allocated 
to surgery and 173 to rehabilitation). The fi gure shows the 
progression through the trial. Table 1 shows the baseline char-
acteristics of patients who entered the trial.

Compliance with treatment and follow-up
Table 2 shows data on participants’ compliance with their 
treatment and follow-up. Forty eight (28%) patients ran-
domised to rehabilitation had surgery by two years. Seven 
(4%) patients randomised to surgery had rehabilitation 
instead of surgery

Complications
Intraoperative complications occurred in 19 surgical cases 
(table 3). Eleven patients required further operations on their 
lumbar spine during the two year follow-up. We did not identify 
any specifi c complications of the rehabilitation programmes.

Clinical outcomes
Oswestry scores improved slightly more in favour of surgery 
(–4.1, 95% confi dence interval –8.1 to –0.1, P = 0.045). After 
imputation for missing follow-up data the mean difference 
was –4.5 (–8.2 to –0.8, P = 0.02) (tables 4 and 5). No signifi -
cant heterogeneity in the effect on the Oswestry score was 
observed between the predefi ned groups of patient (table 6). 
No other difference between groups in any of the other out-
comes at 24 months reached signifi cance, even when we used 
imputed values (tables 4 and 5).

Randomised (n = 349)

Allocated to surgery (n = 176) Allocated to rehabilitation (n = 173)

Received allocated surgery
 (n = 139)
Did not receive surgery (n = 37)

Received allocated
 rehabilitation (n = 151)
Did not receive rehabilitation
 (n = 22)

6 month follow-up
Oswestry disability index
 (n = 161, 91%)
Shuttle walk test (n = 152, 86%)

6 month follow-up
Oswestry disability index
 (n = 160, 92%)
Shuttle walk test (n = 141, 82%)

12 month follow-up
Oswestry disability index
 (n = 157, 89%)
Shuttle walk test (n = 139, 79%)

12 month follow-up
Oswestry disability index
 (n = 154, 89%)
Shuttle walk test (n = 134, 77%)

Any follow-up
Oswestry disability index
 (n = 168, 95%)
Shuttle walk test (n = 160, 91%)

Any follow-up
Oswestry disability index
 (n = 166, 96%)
Shuttle walk test (n = 159, 92%)

24 month follow-up
Oswestry disability index
 (n = 138, 78%)
Shuttle walk test (n = 119, 68%)
Withdrawals at 24 months (n = 10)

24 month follow-up
Oswestry disability index
 (n = 146, 84%)
Shuttle walk test (n = 127, 73%)
Withdrawals at 24 months (n = 10)

Flow of participants through each stage of the spine stabilisation 
trial, showing numbers completing the primary outcome measures 
(Oswestry score and shuttle walking test) at each follow-up stage
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Table 1 Baseline characteristics of patients and clinical details at trial entry. Values are numbers of 
patients unless otherwise indicated

Characteristic Surgery (n = 176) Rehabilitation (n = 173)

Male 79 (44.9) 93 (53.8)
Female 97 (55.1) 80 (46.2)
Age:
 <30 years 24 (13.6) 20 (11.6)
 30–39 years 63 (35.8) 67 (38.7)
 40–49 years 56 (31.8) 66 (38.1)
 50 years 33(18.8) 20 (11.6)
Centre:*
 A 55 (31.3) 54 (31.2)
 B 28 (15.9) 27 (15.6)
 C 45 (25.6) 43 (24.9)
 D 48 (27.3) 49 (28.3)
Mean duration of back pain 
 years (range) in years

8 (1–35) 8 (1–35)

Current smokers 76 (43.2) 74 (42.8)
Litigation 25 (14.2) 21 (12.1)
Currently in paid employment 88 (50.0) 94 (54.3)
Back pain interfered patient’s 
 ability to work:

149 (84.7) 149 (86.1)

 Had to give up job 65 (43.6) 67 (45.0)
 Had to change job 19 (12.7) 10 (6.7)
 Had to reduce hours 17 (11.4) 12 (8.0)
 Had to take sick leave 59 (39.6) 69 (46.3)

Clinical details
Clinical classifi cation:
 Spondylolisthesis 20 (11.4) 18 (10.4)
 Post-laminectomy 14 (8.0) 14 (8.1)
 Chronic low back pain 142 (80.6) 141 (81.5)
Planned surgery type:
 Graf 27 (15.3) 28 (16.2)
 Fusion 149 (84.7) 144 (83.2)
 Missing 0 1 (0.6)
Planned fused level:
 Single level 100 (56.8) 109 (63.0)
 >1 level 70 (39.8) 62 (35.8)
 Missing 6 (3.4) 2 (1.2)

Mean score (SD)
Oswestry disability index 46.5 (14.6) 44.8 (14.8)
Shuttle walking test in metres 254 (209) 247 (185)
SF-36 physical component score 19.4 (8.8) 20 (9.7)
SF-36 mental component score 43.2 (10.9) 44.2 (12.6)
Modifi ed somatic perception questionnaire 9.0 (6.4) 7.7 (5.7)
Zung self rating depression scale 31.8 (10.4) 31.2 (11.8)
Distress and risk assessment method:
 Normal 14 (8.0) 14 (8.1)
 At risk 65 (36.9) 85 (49.1)
 Distressed depressive 87 (49.4) 69 (39.9)
 Distressed somatic 9 (5.1) 2 (1.2)
 Missing 1 (0.6) 3 (1.7)

* Refers to the three largest recruiting centres and a pool of the remaining centres.
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Table 2 Compliance with allocated intervention and further treatment

Surgery (n = 176) Rehabilitation (n = 173)

No. (%) patients who received allocated intervention 139 (79) 151 (87)

Time from randomisation to intervention received per No. of patients:
 <1 week 1 10
 1–2 weeks 8 25
 2 weeks–1 month 20 43
 1–3 months 86 63
 4–6 months 16 9
 7–12 months 5 1
 >12 months 3 0
Low attendance (1–49% available time) * N/A 12
High attendance (50–100% available time) * N/A 139
Median time from randomisation to intervention in 
 months (range)

1.6 (0.2–15.4) 0.9 (0.1–10.2)

No (%) of patients who did not receive 
 allocated treatment

37 (21) 22 (13)

Switched to the other treatment group 7 10
Physiotherapy 3 0
Medical treatment 11 2
No recorded treatment 16 10

No (%) of patients who required further 
 treatment after allocated treatment

97 (55.1%) 68 (39.3%)

Further surgery or surgery * 11 38
Additional rehabilitation programme 7 0
Additional physiotherapy treatment 47 8
Additional medical treatment 32 22
No recorded additional treatment 42 83

* Rehabilitation only.

Table 3 Complication due to surgery (each subject could 
have more than one complication)

Complication No of patients

At treatment site:
 Dural tear 5
 Excessive bleeding 3
 Implant problems 5
 Bone fracture 1
 Vascular injury 1
 Loss of purchase or fi xation 3
 Broken drain 1
Associated with surgical approach:
 Vascular injury 1
 Other (loss of swab 1, peritoneal tear 2) 3
Systemic:
 Haemorrhage 1
Further surgery (up to 2 years’ follow-up) 11

A total of 19 patients had complications as a result of surgery.

Discussion
Patients with low back pain who are considered by surgeons 
to be candidates for spinal fusion may obtain similar benefi ts 
from an intensive rehabilitation programme as they do from 
surgery. Our large randomised controlled trial of spinal fusion 
surgery compared with intensive rehabilitation was limited 
by recruitment diffi culties, some crossover between inter-
vention groups, and incomplete follow-up at 24 months, but 
the results should help clinicians and service providers make 
decisions about the management of chronic low back pain. 
Both groups improved over time, but this effect may refl ect a 
natural resolution of chronic low back pain or regression to 
the mean. The Oswestry scores improved signifi cantly more in 
patients allocated to surgery than in those allocated to reha-
bilitation. Although this difference just exceeds the 4 points 
specifi ed in the sample size calculation, clinically this differ-
ence is small considering the potential risks and additional 
costs of surgery. Analyses adjusting for baseline variations or 
per protocol analysis do not change this interpretation (data 
not shown). Overall, since the other primary outcome of the 
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Table 4 Mean (SD) outcome values at 24 months, and differences in changes from baseline to 24 months

Surgery (n = 176)
Rehabilitation 

(n = 173)
Difference in change 

0–24 months (95% CI)* P value†

Oswestry disability index (n = 138) (n = 146)
 24 months 34.0 (21.1) 36.1 (20.6) –4.1 (–8.1 to –0.1) 0.045
Shuttle walking test (n = 118) (n = 126)
 24 months 352 (244) 310 (202) 34 (–8 to 77) 0.12
SF-36 physical component score (n = 115) (n = 131)
 24 months 28.8 (14.9) 27.6 (14.6) 2.0 (–1.2 to 5.3) 0.21
SF-36 mental component score
 24 months 47.4 (12.2) 48.1 (12.6) –0.2 (–2.9 to 2.6) 0.90
Domains of SF-36
General health perception:
 Baseline 47.6 (20.5) 46.5 (22.0)
 24 months 57.7 (23.6) 53.8 (24.5) 3.2 (–1.9 to 8.2) 0.22
Physical functioning:
 Baseline 33.6 (19.0) 39.5 (22.1)
 24 months 50.0 (28.2) 49.8 (28.7) 4.8 (–1.2 to 10.8) 0.11
Role limitation (physical):
 Baseline 15.0 (27.1) 17.6 (30.5)
 24 months 39.6 (42.1) 38.6 (42.7) 2.4 (–7.5 to 12.3) 0.63
Role limitation (emotional):
 Baseline 43.2 (41.4) 51.2 (44.0)
 24 months 65.2 (42.7) 65.4 (43.4) 2.9 (–7.1 to 13.0) 0.57
Pain:
 Baseline 28.6 (17.3) 30.0 (16.0)
 24 months 48.1 (26.4) 44.9 (25.1) 4.1 (–1.67 to 10.0) 0.16
Social functioning:
 Baseline 41.1 (23.3) 42.8 (22.9)
 24 months 53.6 (26.2) 55.6 (26.2) –0.9 (–6.5 to 4.7) 0.76
Mental health:
 Baseline 60.1 (19.9) 60.3 (21.6)
 24 months 66.5 (21.5) 68.4 (23.1) –1.8 (–6.4 to 2.8) 0.45
Energy and vitality:
 Baseline 35.4 (20.0) 37.4 (21.7)
 24 months 46.7 (22.8) 46.4 (24.9) 1.5 (–3.8 to 6.7) 0.58

* Adjusted for baseline measures. Rehabilitation group is the reference group.
† Analysis of covariance adjusted for baseline measure.

Table 5 Summary of results from available cases and from multiple imputation analyses

Available cases Imputed analyses

Outcome Estimated difference (95% CI) P value* Estimated difference (% CI) P value*

Oswestry disability index –4.1 (–8.1 to –0.1) 0.04 –4.5 (–8.2 to –0.8) 0.02
Shuttle walking test 34 (–8 to 77) 0.12 25 (–16 to 66) 0.23
SF-36 (physical component score) 2.0 (–1.2 to 5.3) 0.21 2.5 (–0.4 to 5.5) 0.09
SF-36 (mental component score) –0.2 (–2.9 to 2.6) 0.90 0.4 (–2.0 to 2.9) 0.73

* Analysis of covariance adjusted for baseline measure.
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Table 6 Mean Oswestry disability score (with standard 
deviations) at baseline and 24 months by different subgroups

Subgroup Surgery Rehabilitation

Centre
A:
 Baseline 42.2 (14.9) 40.3 (12.1)
 24 months 24.6 (20.7) 28.9 (17.3)
B:
 Baseline 46.7 (13.1) 46.9 (15.1)
 24 months 31.4 (18.5) 43.7 (20.9)
C:
 Baseline 48.7 (14.0) 47.8 (15.8)
 24 months 42.0 (18.8) 43.3 (19.7)
D:
 Baseline 49.3 (14.8) 45.8 (15.8)
 24 months 39.7 (20.9) 33.6 (22.1)
Clinical classifi cation
Spondylolisthesis:
 Baseline 42.1 (15.1) 38.0 (13.8)
 24 months 35.7 (25.4) 30.1 (19.9)
Post-laminectomy:
 Baseline 50.7 (14.2) 47.3 (10.2)
 24 months 38.0 (18.4) 33.7 (14.8)
Chronic back pain:
 Baseline 46.7 (14.5) 45.4 (15.2)
 24 months 33.3 (20.8) 37.2 (21.1)
Litigation
No:
 Baseline 45.6 (14.9) 44.2 (15.1)
 24 months 34.0 (21.7) 35.4 (20.9)
Yes:
 Baseline 52.0 (11.3) 49.1 (12.4)
 24 months 34.1 (17.7) 41.5 (17.0)
Smoking
No:
 Baseline 45.5 (14.6) 43.1 (14.9)
 24 months 29.5 (19.1) 34.6 (19.3)
Yes:
 Baseline 47.8 (14.5) 46.9 (14.6)
 24 months 40.6 (22.2) 38.4 (22.2)
Planned type of surgery
Graf:
 Baseline 45.2 (12.6) 42.5 (17.2)
 24 months 35.1 (18.9) 35.6 (24.3)
Fusion:
 Baseline 46.8 (14.9) 45.3 (14.4)
 24 months 33.9 (21.5) 36.4 (19.8)

shuttle walking test and the other measures did not differ 
(even after imputation for missing values), the small differ-
ence observed in Oswestry scores should be interpreted cau-
tiously. Furthermore, the confi dence intervals can be used to 
rule out differences in Oswestry scores of more than 10 points 

in favour of surgery and of more than 2 points in favour of 
rehabilitation. Consequently, they narrow substantially the 
range of plausible estimates for any benefi t of surgery.

Comparison with related research
A Cochrane review in 1999 found a complete absence of 
randomised controlled evidence for spinal fusion.5 Three ran-
domised controlled trials have been reported subsequently. 
Möller and Hedlund reported a trial in isthmic spondylolis-
thesis, with 77 patients randomised to different forms of sur-
gery and 34 patients randomised to an exercise programme.19 
The patients allocated to surgery reported greater benefi ts at 
two years in terms of Oswestry scores compared with those 
allocated to exercise, but instrumentation and bone grafting 
was not found to produce an advantage over bone grafting 
alone. A Swedish trial randomised 222 patients to three surgi-
cal groups of equal size and 72 patients to physiotherapy.20 
They reported decreased pain and disability in the surgical 
group compared with physiotherapy at two years but no dif-
ference in outcomes between the different surgical techniques. 
Little effect of physiotherapy was apparent at two years, 
although this may have been because of the type or intensity 
of treatment. Routine physiotherapy and intensive rehabilita-
tion are not the same and should not be considered as such. 
Brox et al reported no differences between groups in a small 
trial of 64 patients comparing instrumented posterior fusion 
with rehabilitation followed to 12 months.21 Improvements 
in outcomes were comparable with those in both arms of the 
present trial and in the surgical arm of the Swedish trial.

Evidence is moderate to strong that multidisciplinary 
rehabilitation including general exercise programmes of 
muscle strengthening, fl exibility training, and cardiovascu-
lar endurance along with a cognitive behaviour approach 
improves function, reduces pain, and work loss in patients 
with chronic pain of the low back compared with usual care 
or non-multidisciplinary treatment.8, 22, 23 This type of treat-
ment was diffi cult to implement in the trial and, although 
recommended in recent European guidelines,24 is not rou-
tinely available in the NHS.

Strengths and limitations of the study
The uncertainty principle had initially been expected to aid 
trial accrual by bringing the process of informed consent 
closer to standard medical practice. However, recruitment was 
slow and numbers enrolled smaller than planned. Eligibility 
was based on the uncertainty of outcome principle, but 
uncertainty does not come easily to surgeons when patients 
are demanding clear direction and advice. Factors infl uencing 
recruitment will be presented elsewhere. This pragmatic trial 
refl ects current practice across the UK of experienced spine 
surgeons selecting patients for fusion. Surgeons may argue 
that we excluded the best candidates for surgery through 
“certainty” of outcome, but this certainty varied between sur-
geons. Evidence from the Swedish trial25 shows that patients 
with low neuroticism, narrow discs, and a short time off work 
do best with surgery.
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Surgical issues
Surgeons were allowed their own choice of operation to 
improve the chance of clinical success. The Swedish trial 
showed no difference between three surgical techniques of 
fusion.24 These results call into question what lumbar fusion is 
actually doing to patients with chronic back pain. Elucidation 
of this question was not the objective of this study. The results 
are highly relevant to spinal fusion surgery, as well as the new 
techniques of fl exible stabilisation and disc replacement that 
are being applied to this group of patients.

Loss to follow-up
Loss to follow-up at 24 months (20%) limits the internal 
validity of the trial. We used multiple imputation as a sensi-
tivity analysis to tackle potential bias resulting from the poor 
response rate. Overall estimates of the treatment effect were 
very similar with all methods of statistical analysis.

Blinding
The pre-randomisation outcomes were scored by the trial 
research therapists and later checked by computer. All sub-
sequent outcomes were scored centrally. We were not able to 
blind the trial research therapists to patient allocation after 
the baseline assessment.

Limitation of outcomes
The available outcome measures are blunt instruments for 
assessing a complex condition. The minimum clinically 
important change in the Oswestry scores has been estimated 
by different observers as being somewhere between 4 and 17.26 

Debate continues among back pain experts over the question 
of what represents a clinically important change. Functional 
measures are diffi cult to apply in a multicentre setting, and 
although the use of muscle measurement techniques may be 
useful, it was not possible to use them in this trial because 
of fi nancial limitations. Walking capacity was chosen as it is 
simple and cheap to measure and often a limitation for people 
with chronic low back pain.

Compliance with treatment protocol
The 48 (28%) patients who were randomised to rehabilita-
tion and then had additional surgery by two years should be 
considered as an additional outcome of the trial and taken 
into account in the interpretation of the results. Although 
some patients and surgeons were clearly not satisfi ed with the 
results of rehabilitation, many more seem to have benefi ted 
and avoided surgical intervention.

Conclusion
Nearly three quarters of those patients allocated to rehabilita-
tion avoided surgery by two years. Rehabilitation including a 
cognitive behaviour approach is not routinely or widely avail-
able to patients with chronic pain of the low back, and this trial 
implies that it should be. Rehabilitation programmes require 
fi nance, space, and training, but above all they need the strong 
support of all clinicians involved in the care of these patients.
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What is already known on this topic
Limited evidence shows that patients with severe chronic 
low back pain treated with spinal stabilisation surgery have 
a better outcome in terms of pain and disability than with 
traditional conservative management

The results of spinal stabilisation surgery seem to be similar 
whatever surgical technique is used

Intensive multidisciplinary rehabilitation including a biop-
sychosocial approach improves pain and function in severe 
chronic low back pain compared with usual care or tradi-
tional conservative treatment

What this study adds
No clear evidence emerged that primary spinal fusion 
surgery was more benefi cial than intensive rehabilitation 
using principles of cognitive behaviour therapy

Evidence exists to support intensive rehabilitation with 
cognitive behaviour principles as an alternative to spinal 
fusion surgery in the management of chronic low back pain

Peat_Unit 8_Fairbank.indd   127Peat_Unit 8_Fairbank.indd   127 6/12/2008   2:14:36 PM6/12/2008   2:14:36 PM



Originally published in BMJ 2005; 330. Reproduced with permission.

128   UNIT 8  Follow-up studies

Ethical approval: The trial was approved by a multicentre research 
ethics committee (twice; references 98/5/14 for original and 03/05/034 
for long term follow-up) and 15 local research ethics committees.

References
Katz J. Lumbar spinal fusion: surgical rates, costs, and complica-1 
tions. Spine 1995;20:78S–83S.
Department of Health (England). Hospital episode statistics, 2 
1998–2003. London: DoH, 1998–2003.
Cherkin D, Deyo R, Loeser J, Bush T, Waddell G. An international 3 
comparison of back surgery rates. Spine 1994;19:1201–6.
Deyo RA, Gray DT, Kreuter W, Mirza S, Martin, BI. United States 4 
trends in lumbar fusion surgery for degenerative conditions. Spine 
2005 (in press).
Gibson J, Grant I, Waddell G. The Cochrane review of surgery for 5 
lumbar disc prolapse and degenerative lumbar spondylosis. Spine 
1999;24:1820–32.
Mayer T, Gatchel R, Kishino N. Objective assessment of spine 6 
function following industrial injury. A prospective study 
with comparison group and one year follow up. Spine 1985;
10:482–93.
Lindstrom I, Ohlund C, Eek C. The effect of graded activity on 7 
patients with sub acute low back pain: A randomised prospective 
clinical study with an operant conditioning behavioural approach. 
Phys Ther 1992;72:279–93.
Guzman J, Esmail R, Karjalainen K, Malmivaara A, Irvin E, 8 
Bombardier C. Multidisciplinary rehabilitation for chronic low 
back pain: systematic review. BMJ 2001;322:1511–6.
NHS Standing Group. 9 Health technology (SGHT) report. London: 
Department of Health, 1994.
Turner J, Ersek M, Herron L, Heselkorn J, Kent D, Ciol M, 10 
et al. Patient outcomes after lumbar spinal fusions. JAMA 
1992;268:907–11.
Weijer C, Shapiro S, Cranley Glass K. For and against: clinical 11 
equipoise and not the uncertainty principle is the moral underpin-
ning of the randomised controlled trial. BMJ 2000;321:756–8.
Fairbank J, Pynsent P. The Oswestry Disability Index. 12 Spine 2000;
25:2940–53.
Roland M, Fairbank J. The Roland-Morris disability question-13 
naire and the Oswestry disability questionnaire. Spine 2000;
25:3115–24.

Taylor S, Frost H, Taylor A, Barker K. Reliability and responsiveness 14 
of the shuttle walking test in patients with chronic low back pain. 
Physiother Res Int 2001;6:170–8.
Frost H, Lamb S, Shackleton C. A functional restoration pro-15 
gramme for chronic low back pain: a prospective outcome study. 
Physiotherapy 2000;86:285–93.
Pratt R, Fairbank J, Virr A. The reliability of the shuttle walking 16 
test, the Swiss spinal stenosis questionnaire, the Oxford spinal 
stenosis Score, and the Oswestry disability index in the assessment 
of patients with lumbar spinal stenosis. Spine 2002;27:84–91.
Main CJ, Wood PLR, Hollis S, Spanswick CC, Waddell G. The dis-17 
tress and risk assessment method: A simple patient classifi cation 
to identify distress and evaluate the risk of poor outcome. Spine 
1992;17:42–52.
Royston P. Multiple imputation of missing values. 18 Stata J 2004;
4:227–41.
Möller H, Hedlund R. Surgery versus conservative treatment in 19 
adult isthmic spondylolisthesis. A prospective randomized study 
part 1. Spine 2000;25:1171–5.
Fritzell P, Hagg O, Wessburg P, Nordwall A, Group SLSS. Chronic 20 
back pain and fusion: a comparison of three surgical techniques: 
a prospective multicentre randomized study from the Swedish 
Lumbar Spine Study Group. Spine 2002;27:1131–41.
Brox J, Sørensen R, Friis A, Nygaard Ø, Indahl A, Keller A, et al. 21 
Randomized clinical trial of lumbar instrumented fusion and cog-
nitive intervention and exercises in patients with chronic low back 
pain and disc degeneration. Spine 2003;28:1913–21.
Schonstein E, Kenny D, Keating J, Koes B, Herbert R. Physical 22 
conditioning programs for workers with back and neck pain: a 
Cochrane systematic review. Spine 2003;28(19):E391–5.
Liddle S, Baxter G, Gracey J. Exercise and chronic low back pain: 23 
what works? Pain 2004;107:176–90.
European Commission Rersearch Directorate General. COST B13 24 
Management Committee. European guidelines for the management 
of low back pain. www.backpaineurope.org, 2005 (accessed 17 
May 2005).
Hägg O, Fritzell P, Elkselius L, Nordwall A. Predictors of outcome 25 
in fusion surgery for chronic low back pain. A report from the 
Swedish lumbar spine study. Eur Spine J 2003;12:22–33.
Taylor S, Taylor A, Foy M, Fogg A. Responsiveness of  common outcome 26 
measures for patients with low back pain. Spine 1999;24:1805–12.

Peat_Unit 8_Fairbank.indd   128Peat_Unit 8_Fairbank.indd   128 6/12/2008   2:14:36 PM6/12/2008   2:14:36 PM



UNIT 9

Survival analyses

129

Aims

To understand the different ways in which survival analyses 
can be used, and to decide whether appropriate fi gures have 
been used to report survival rates.

Per cent survival
Given that survival is a binary outcome, the number of 
events at a certain point in time can be summarised using 
percentages, as discussed in Unit 2. Survival rates are very 
similar to incidence rates except that for survival, the event 
usually signals the cessation of a condition, whereas for 
incidence, the outcome signals the onset of a condition. 
Frequency statistics are often used to summarise survival 
rates, for example, as one-, two- and fi ve-year survival rates 
in patients who undergo a surgical procedure. Survival 
rates expressed as percentages in this way can be compared 
between exposure groups or treatment groups using a chi-
square test to obtain a P value (see Unit 3) or by estimation 
using confi dence intervals (see Unit 1).

Kaplan–Meier statistics
Although survival rates at a single point in time provide 
useful summary statistics, they do not take advantage of 
the complex nature of data collected longitudinally. If the 
event is regarded as being positive or negative regardless of 
the amount of time that participants have been in the study, 
important information is lost. To utilise data collected about 
both the occurrence and the timing of events, Kaplan–Meier 
statistics are used.

Learning objectives
On completion of this unit, participants will be able to:

interpret results reported as per cent survival,    •

Kaplan–Meier statistics or hazard ratios;
decide whether the assumptions for survival analyses    •

have been met;
compute a hazard ratio;   •

judge whether graphical representations of survival    •

rates are appropriate.

Background

Rates of survival can be measured in longitudinal stud-
ies which include both cohort studies and randomised 
controlled trials in which participants are followed for a 
length of time. In a cohort study, the infl uence of an expo-
sure on survival rates can be compared between study groups, 
whereas in randomised controlled trials the effi cacy or 
effectiveness of a new treatment compared with a standard 
treatment in increasing survival rates can be measured.

In this Unit, we will use the term ‘event’ to describe 
the outcome of interest. In survival analyses, the event is 
classically a non-favourable outcome such as death, disease 
onset or treatment failure. However, survival analyses can 
also be applied to other types of events, such as discharge 
from hospital, disease remission or a lifestyle choice – for 
example cessation of breast-feeding or uptake of contracep-
tion. In some studies, several outcomes may be combined 
to defi ne an event. For example, an event that summarises 
whether death, acute myocardial infarction or cardiac arrest 
has occurred is often used in clinical trials.1

In this Unit, we discuss three ways in which data relating 
to survival events can be summarised, that is, as frequency 
rates, Kaplan–Meier statistics or hazard ratios.

Glossary

Term Defi nition

Event Outcome of interest which is typically 
death but can be a non-fatal or favourable 
outcome, e.g. discharge from hospital.

Censored 
observations

Used to describe participants who withdraw 
from the study or who do not experience the 
outcome of interest.

Kaplan–Meier 
statistic

Statistic used to compare the event rate 
over time between two or more study 
groups. Also called a log-rank test.

Hazard ratio The risk of the event in a study group divided 
by the risk of the event in a reference group.
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Rather than simply comparing events at arbitrary time 
points, Kaplan–Meier statistics are used to compare the 
event rate over time between the study groups.2 Kaplan–
Meier statistics are based on non-parametric methods and 
have the advantage that they do not require the survival time 
to be normally distributed or the event rate to be constant 
over time. A feature of Kaplan–Meier statistics is that they 
allow for some participants to be followed for longer peri-
ods of time than others, and for the event to have not yet 
occurred in all participants.3 Obviously, a participant who 
has been in the study for only 6 months does not have the 
same chance for the event to occur as a participant who has 
been in the study for 12 months. In Kaplan–Meier analyses, 
the occurrence of the event, the time to the event and the dif-
ferent length of follow-up for each participant is taken into 
account, and therefore allowance is made for participants 
who leave the study early or who have had less opportunity 
for the event to occur.

Participants who leave the study or do not experience 
the event during the follow-up period are called ‘censored’ 
observations.2 The term ‘censored’ is also used to describe 
participants who are lost to follow-up, for example because 
they withdraw from the study, die without the investigators’ 
knowledge or die from causes other than the condition being 
studied. Classifying participants who leave the study before 
experiencing the event as being ‘censored’ allows them to 
be included in the analysis. The participants who complete 
the time frame of the study without experiencing the event 
are also regarded as being censored.

Survival analyses are often shown plotted as Kaplan–
Meier curves as in Figure 9.1. In this fi gure, the curve for 
30 people in a new treatment group is compared with the 
curve for 26 people in a control group who receive standard 

care.4 Each time an event occurs, the per cent that are event 
free is reduced and the curve steps down. Each time a person 
is censored, that is, leaves the study, the time to being cen-
sored is marked as a cross-hatch on the line and the curve 
does not step down. However, censoring reduces the  number 
of people contributing to the curve, so each event after the 
censor represents a higher percentage of the remaining 
people. Because censoring results in a decrease in the num-
ber of people at risk, the curve becomes less reliable over the 
study period, especially if there are many people who are 
censored at the beginning of the curve.

The curve can be used to calculate the probability of 
survival at any time interval and also over a time period. 
In Figure 9.1, for the new treatment group in the interval 
from 0 to 9 days, 3 people are censored as indicated by the 
cross-hatches, therefore 27 (30 – 3) people are at risk of 
experiencing the event on day 9. On day 9, one person expe-
rienced the event as indicated by the step down. At the end 
of day 9, the probability of surviving is the number of people 
who have not experienced the event divided by the number 
of people at risk, that is, 26/27 or 0.963. At the start of the 
next time interval before the next event, that is days 9 to 
12, 26 people are at risk, 1 person is censored on day 9 and 
1 person experiences the event on day 12. At the end of this 
interval, 25 (26 –1 person censored) people are at risk and 
1 person experienced the event. Therefore, the proportion 
surviving this interval is 24 (25 – 1 person who experienced 
the event) divided by 25, the number of people at risk, or 
0.960. The estimated survival to any time point is equal to the 
probability of surviving the preceding intervals. Therefore, 
the estimated survival rate at day 12 is 0.963 multiplied by 
0.960, to give 0.924. This procedure continues until the last 
event or the completion of the study.

The most commonly reported statistic to test whether 
the survival rates are different between study groups is the 
log-rank statistic. This statistic is similar in some ways to 
a chi-square test in that the number of observed events is 
compared to the number of expected events. The method to 
calculate the number of expected events is shown later in this 
Unit. For the data in Figure 9.1, the log-rank statistic has a 
P value of 0.07, indicating no signifi cant difference between 
survival rates in the new treatment and control groups. 
When marginal P values such as this occur, it is important to 
assess whether the fi nding can be regarded as a type II error, 
as described in Unit 1.

It is recommended that survival plots are not extended 
into times when the number of participants remaining is 
unduly small, and that the plots are curtailed when less than 
10–20% of the participants are still in follow-up.1 The deci-
sion of when to restrict the x-axis time period is diffi cult, 
but the right-hand side of the plot should not represent 
only a few participants in which there is greater uncertainty. 
When the number in either group is small, a single event 
can have a large difference on the per cent of patients who 

Figure 9.1 Time to an event in the new treatment group and 
the control group.
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remain event free. Thus, a large step down in the curve can 
occur which may visually increase the between-group differ-
ence considerably, but which may only have a small effect on 
the P value.

In the trial shown in Figure 9.1, there was a fi xed follow-up 
time of 72 days. There were 6 events and 24 censored cases 
in the new treatment group at 59 days, and 11 events and 
15 censored cases in the control group at 65 days. The x-axis 
could be restricted to 42 days when 20% of the sample or 
11 participants remained enrolled, but this would make lit-
tle difference to the fi gure because no events occurred after 
36 days. No matter how the x-axis is restricted when display-
ing the data in a fi gure, all participants must be included 
in the calculation of the log-rank statistic regardless of the 
number remaining at any point in time.

expected number of events is the observed number of events 
in each group. The expected number of events in a study 
group is calculated as follows:

Expected =  Total number of events 
× (Group size/Total sample size)

For example, if there are 100 participants in each group 
and the observed number of events is 30 in the new treat-
ment group and 50 in the control group, then the expected 
number of events in each group will be 80 × (100/200) or 40. 
The hazard ratio can then be calculated as (30/40)/(50/40), 
or 0.6, indicating a decreased risk of the event in the new 
treatment group.

This hazard ratio of 0.6 should not be interpreted to 
mean that the new treatment group are 0.6 times less likely 
to die, although it does mean that they are ‘protected’ from 
the event occurring when compared to the control group. 
A hazard ratio of 0.6 is more correctly interpreted to mean 
that the participants in the new treatment group, who are 
still alive at a certain time point, have 0.6 times the chance of 
experiencing the event at the next time point, compared to 
participants in the control group.8

Assumptions
There are three assumptions for Kaplan–Meier analyses 
and calculating the hazard ratio. As with other independent 
samples statistics, the fi rst assumption is that the groups are 
independent, that is, each participant is included only once 
and in only one group. The other two assumptions described 
below relate to possible reasons for differences between the 
groups, and are not so important in clinical trials in which 
randomisation is expected to balance the important prognos-
tic factors, but can be important in observational studies.

The second assumption is that participants’ survival pros-
pects remain constant, that is participants who are enrolled 
early in the study have the same survival prospects as those 
who are enrolled towards the end of the study. Thus, factors 
that infl uence participants’ survival prospects, such as new 
treatments, should not be introduced over the study period. 
Time-related differences in survival rates can also occur if 
participants enrolled early on have a different underlying 
prognosis from participants enrolled towards the end of the 
study. If the sample size is large enough, this assumption can 
be tested by comparing event rates in participants enrolled at 
different times during the study.

TAKE HOME LIST

The three different ways to analyse data from studies in which 
information is collected about whether a specifi ed event 
occurs over time are:

to compare the rate of the event between the study • 
groups at set time points, e.g. the rate of deaths at 1, 3 
and 5 years following surgery;

to use Kaplan–Meier statistics to compare event rates over • 
time between study groups;

to calculate the hazard ratio at set time points.• 

Hazard ratios
Although Kaplan–Meier statistics are widely used to 
compare event rates, they do not provide any direct infor-
mation about the size of the difference between the groups.5 
Although some estimate of an effect size can be obtained by 
comparing survival frequencies, as described above, it is also 
possible to calculate a relative risk which compares the event 
rates in the two groups at a single point in time. This statistic 
has the same interpretation as relative risk, as described in 
Unit 4, but in survival analyses the risk statistic is called the 
hazard ratio. The hazard ratio will be less than 1 if the treat-
ment is benefi cial.6

Although some statistics programs do not report the 
hazard ratio directly, it can be obtained using Cox regression 
or easily calculated. The formula for the hazard ratio at any 
time point is:

T T

C C

( / )
Hazard ratio =  

( / )

O E

O E

where O is the observed number, E is the expected number, 
the subscript T refers to the treatment group and the sub-
script C refers to the control group. The expected number of 
events is the number that would occur if there was an equal 
risk in both groups.7 If both groups have an equal risk, the 

The assumptions for survival analyses are that:
the observations are independent, that is, each person    •

can be included once only;
survival prospects remain constant over the study    •

period;
censored participants have the same survival    •

prospects as the non-censored participants.
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Figure 9.2 Per cent survival after bypass surgery at 1 year with 
99% confi dence intervals.
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The third assumption is that participants who are cen-
sored have the same survival prospects as participants who 
continue in the study, that is the risk of the event must not 
be related to the reason for censoring or loss to follow-up.3 
For example, participants who experience more debilitating 
symptoms in a new treatment group should not be prefer-
entially lost to follow-up compared with participants who 
experience fewer symptoms in the control treatment group. 
This assumption is not easy to test and the judgment may 
have to rely on background knowledge and clinical insight.7

Minimising bias
The measurements of both the event and the time to the 
event must be accurate to avoid bias in the estimates from 
a survival analysis. It is important that the event is clearly 
defi ned and that it is measured precisely. When an event 
occurs that is not due to the condition being investigated, 
it is important to give careful consideration to whether 
it is treated in the analyses as an event or as a withdrawal 
(censored observation).

It is also important that the measurement of the time to 
the event is precise. This can be achieved through regular 
observations during the study rather than surmising that 
the event occurred between two points in time.3 For accu-
rate estimates of survival statistics, it is not adequate to 
make routine clinical examinations, for example at 6-month 
intervals, and assume that the event occurred at the 6-month 
follow-up when it actually occurred at an earlier time.

As with all analyses, if the total number of participants in 
any group is small, say less than 30, the standard errors around 
the summary statistics will be large, and therefore the survival 
estimates will be imprecise and type II errors may occur.

Reading and questions
Reprint
Pocock SJ, Clayton TC, Altman DG. Survival plots of 
time-to-event outcomes in clinical trials: good practice and 
pitfalls. Lancet 2002;359:1686–1689. (See p. 136.)

The reprint by Pocock et al. (2002) discusses the ways in 
which the display of survival plots is potentially open to 
visual misinterpretation that may mask the correct clinical 
message. In the reprint, some common pitfalls in the ways in 
which survival plots can be presented are discussed and some 
guidelines about preferred statistical practice are suggested. 
After reading the reprint answer the following questions.

Questions
When is it preferable for survival curves to be plotted 1 
going upwards to display the cumulative proportion who 
have experienced the event over time?
When is plotting the data going downwards the most 2 
useful way to display the results?

How can a break in the 3 y-axis scale make the curve 
potentially open to misinterpretation?
How far should the 4 x-axis that displays time be extended?
What problems can occur when there are only a small 5 
number of participants remaining at the end of the trial?

Worked example
Set article
Gibbs JL, Monro JL, Cunningham D, Rickards A. Survival 
after surgery or therapeutic catheterisation for congenital 
health disease in children in the United Kingdom: analy-
sis of the central cardiac audit database for 2000–1. BMJ 
2004;328;611. (See p. 141.)

In the set article, Gibbs et al. (2004) report 30-day and 1-year 
survival rates in children who have undergone treatment for 
congenital heart disease. The data were collected in a cardiac 
audit database in which data from all 13 tertiary centres at 
which cardiac surgery is performed on children in the United 
Kingdom is centralised. Children who underwent surgery 
are classifi ed into three groups: neonates (less than 1 month 
of age), infants (1 month to 1 year of age) and children 
(1 to 16 years of age).

The authors show a survival plot in Figure 1 that describes 
survival rates following bypass in each of the three age groups. 
No P value is given, so we have to rely on the confi dence 
intervals presented in the table to estimate whether there is a 
difference in survival rates between age groups. The authors 
report 30-day and 1-year survival rates with 99% confi dence 
intervals. Although the 99% confi dence intervals are wider 
than 95% confi dence intervals, the same principles of com-
paring overlap, as discussed in Unit 2, apply; but in this case 
no overlap infers a P value of at least < 0.01 rather than < 0.05. 
The 1-year survival rates for bypass surgery that are reported 
in the table are shown graphically in Figure 9.2. The reported 

Peat_Unit 9.indd   132Peat_Unit 9.indd   132 6/12/2008   2:15:55 PM6/12/2008   2:15:55 PM



UNIT 9  Survival analyses   133

confi dence intervals were based on a binomial distribution 
and are asymmetric around the survival rate, unlike confi -
dence intervals based on a normal distribution which would 
have been symmetric. Comparison of the confi dence intervals 
shows that they do not overlap, indicating a signifi cant differ-
ence in 1-year survival rates between each of the age groups 
with P < 0.01.

Because the x-axis range in this fi gure is from 78% to 
98% survival, rather than from 0 to 100%, it tends to make 
the differences between the three ages groups look more 
dramatic than they actually are. In fact, the gaps between the 
confi dence intervals are only 4 to 6%.

The survival rates for bypass surgery at 30 days and 1 year 
are summarised in Tables 9.1 and 9.2. Calculate the 95% 
confi dence intervals around the percentages based on a nor-
mal distribution using the formula given in Unit 2. These 
confi dence intervals will be symmetrical around the sur-
vival rate. Also calculate the 95% confi dence intervals for the 
bottom three rows of Tables 9.1 and 9.2, which have the 
sample size that would be expected from a single centre. 
Next, plot the 1-year estimates for both the total sample and 
the single centre on the graph shown in Figure 9.2.

Finally, calculate the number of events in each group 
and the hazard ratio for death to occur in the neonates and 
infants, each compared to the ‘child’ group as the reference 
group. Note that the hazard ratio does not change with 

sample size, but in this exercise the hazard ratios will be 
slightly different because of rounding errors.

By comparing the 95% confi dence intervals and using the 
plotted estimates and the hazard ratios, answer the following 
questions.

How do your 95% confi dence intervals compare with the  •

99% confi dence intervals reported?
What happens when the sample size is smaller? •

Would you revise the conclusion about a between age  •

group difference if the data from only one centre had 
been reported?
Could the interpretation of age group differences from  •

the 13 centres or from only one centre be regarded as a 
type I or type II error?
The authors report that: “For infants, mortality after  •

treatment for heart disease at 1 year was double that at 
30 days”. From the data presented in the article, how do 
they reach this conclusion?
How would you interpret the hazard ratios? •

Critical appraisal

Work through the critical appraisal checklist to review the 
paper by Gibbs et al. (2004) and decide whether the results 
and the conclusions are valid and justifi ed.

Table 9.1 Survival at 30 days for neonates, infants and children undergoing bypass 
surgery

Group
No. of 
procedures

% survival at 
30 days 95% CI

No. of 
events Hazard ratio

Neonate 383 87.1 83.7, 90.5 34 5.2
Infant 909 94.4
Child 1353 97.5 —

Neonate 30 87.1
Infant 75 94.4
Child 110 97.5 —

Table 9.2 Survival at 1 year for neonates, infants and children undergoing bypass 
surgery

Group
No. of 
procedures

% survival at 
1 year 95% CI

No. of 
events Hazard ratio

Neonate 383 82.8 79.0, 86.6 54 4.3
Infant 909 90.0
Child 1353 96.0 —

Neonate 30 82.8
Infant 75 90.0
Child 110 96.0 —
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Critical appraisal checklist for an article that reports survival data 

Study designA. 

Is the event clearly defi ned?1. 

Could the event be subject to recall bias?2. 

Has time been measured accurately?3. 

Could any factors have preferentially changed the participant’s 4. 
survival prospects over the course of the study?

Statistical methodsB. 

Is the sample size suffi cient in each group?5. 

Are there suffi cient people in each group to make conclusions 6. 
towards the end of the study?

Do the authors provide evidence that the assumptions for 7. 
survival analysis have been met?

ResultsC. 

Is the fi gure reported appropriately?8. 

Has the y-axis been truncated to visually infl ate the differences 9. 
between the groups?

InterpretationD. 

Do the authors show survival rates for different subgroups? 10. 
If yes, how do they interpret these rates?

Have the survival rates been interpreted correctly?11. 

Quick quiz

Tick the correct answer for each of the following questions.

Kaplan–Meier statistics are most appropriate when:1 
the time of follow-up is normally distributed;(a) 
many people drop out of the study;(b) 
most people have been followed for a long period of (c) 

time;
people have been followed for different periods of time.(d) 

If Kaplan–Meier statistics are used, information of the 2 
event should be collected from participants:

at regular 6-month intervals;(a) 
as often as possible;(b) 
at planned medical check-ups;(c) 
at planned home visits.(d) 

A censored observation in the data occurs:3 
before the follow-up data are collected;(a) 
when the data are not entered into the database;(b) 

if a participant misses a study visit;(c) 
when a person has withdrawn from the study.(d) 

If the 4 y-axis of a Kaplan–Meier curve is shortened this will:
visually magnify differences between study groups;(a) 
visually minimise differences between study groups;(b) 
visually make no difference;(c) 
visually make the fi gure easier to read.(d) 
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In many clinical trials, the primary outcome for comparison 
of treatments is the time to occurrence of a disease-related 
event. The most widely adopted method of displaying such 
results is by means of Kaplan-Meier survival plots, which 
show the proportion of patients who experience (or do not 
experience) the event by time since randomisation. The event 
itself could be death (hence the term “survival plot” is used 
loosely), but is often time to a non-fatal event (eg, disease 
recurrence in cancer) and can sometimes be a favourable out-
come such as discharge from hospital. Combined endpoints 
are used increasingly in clinical trials (eg, death, acute myo-
cardial infarction, or cardiac arrest), and in such cases, the 
survival plot shows the time to the fi rst event.

The statistical methods for producing survival plots and 
for calculating p values, estimates of treatment effects, and 
associated CIs are all well documented.1–3 However, the dis-
play and interpretation of survival plots are prey to several 
potential distortions and deceptions that can make the right 
message diffi cult to work out, as reported in a previous survey 
of survival analyses in cancer trials.4 In this article, we con-
centrate on treatment comparisons in clinical trials, although 
many of the same problems apply to survival plots in general. 
Our aim is to reveal some of the more common pitfalls and to 
give some guidelines to authors, journal editors, and readers 
on what constitutes desirable statistical practice.

As a practical basis for our concerns and conclusions, we 
identifi ed all 35 clinical trials with survival plots that were 

published in four general medical journals during July to 
October, 1999 (19 in The Lancet, ten in the New England 
Journal of Medicine, four in the British Medical Journal, and 
two in the Journal of the American Medical Association). These 
trials constituted 41% of the 86 individually randomised 
parallel-group trials published in the four journals.

Should plots go up or down?
A survival plot going down displays the proportion of patients 
free of the event (which of course declines over time), whereas 
a plot going up shows the cumulative proportion experienc-
ing the event by time. In principle, both contain the same 
information, but the visual perceptions with regard to com-
parison of treatment groups can be quite different.

For instance, fi gure 1 shows three ways of displaying the 
same data on time to non-fatal myocardial infarction or death 
in the RITA-2 trial.5 The fi rst plot, going up, indicates clearly 
the excess of events in the group randomised to percutane-
ous transluminal coronary angioplasty (PTCA) compared 
with the group continuing on medical treatment. This plot 
has the same style as in the trial’s publication,5 which also 
gave the numbers and percentages of patients with myo-
cardial infarction or death: 32 of 504 (6.3%) and 17 of 
514 (3.3%) for the PTCA and medical treatment groups, 
respectively (p = 0.02). The second plot, going down and 
using the whole vertical axis from 0 to 100%, makes the dif-
ference look much less pronounced (the corresponding pro-
portions event-free being 93.7% and 96.7%, respectively) and 
mainly emphasises that most patients did not experience the 
event. The third plot, going down but with a break in the ver-
tical axis seems to fi ll the space more informatively, but relies 
on the reader recognising the break in scale: if they do not, the 
impression is left that PTCA is harmful to a large proportion 
of patients. Hence having such a break in the scale is not a 
good style to adopt.

In practice, only one of these options can be displayed in a 
trial report. We recommend the fi rst option—the plot going 

Lancet 2002; 359: 1686–89
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Survival plots of time-to-event data are a key component for reporting results of many clinical trials (and cohort studies). 
However, mistakes and distortions often arise in the display and interpretation of survival plots. This article aims to highlight 
such pitfalls and provide recommendations for future practice. Findings are illustrated by topical examples and also based on 
a survey of recent clinical trial publications in four major journals. Specifi c issues are: should plots go up or down (we recom-
mend up), how far in time to extend the plot, showing the extent of follow-up, displaying statistical uncertainty by including 
SEs or CIS, and exercising caution when interpreting the shape of plots and the time-pattern of treatment difference.
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losartan compared with captopril. Admittedly, the treatment 
difference was not statistically signifi cant, but any claim 
of potential equivalence was perhaps falsely magnifi ed by 
the choice of survival plot going down over the full 100% 
scale.7 The important survival superiority of pravastatin over 
placebo in the LIPID trial8 was hard to discern because of 
this same injudicious choice of survival plot going down over 
the full 100% scale, since death rates in all groups were, in 
fact, less than 10% after 5 years. Incidentally, the investiga-
tors claim that this choice was introduced by the journal, not 
the authors themselves. Such plots going down are useful 
only for trials in which the event rate is high, such as those 
in cancers with poor prognosis. For instance, for a neuroblas-
toma trial,9 the same style of survival plot was perfectly clear, 
since the median survival was less than 2 years in a study with 
follow-up over 5 years for those still alive.

The applicability of trial fi ndings should not rely on 
relative treatment differences alone (eg, proportional reduc-
tion in mortality), but must also include absolute treatment 
differences (eg, number needed to treat per life saved10,11). 
Provision of both survival plots would perhaps be ideal, 
one going up to reveal the detail and the relative treatment 
difference, and one going down to clarify the small absolute 
risk and hence small absolute difference in treatments. In trial 
reports for which space is at less of a premium and in regula-
tory submissions, such an approach is to be encouraged for the 
key outcomes, but it is unrealistic for journal publications.

In the 35 trials we surveyed, 12 had plots going up, 15 had 
plots going down all the way to zero, and eight had plots going 
down but with a break in scale. This disparity in approach is 
undesirable.

How far in time to extend the plot?
Follow-up times in any one trial can vary substantially 
because patients are usually recruited over a long period, and 
some patients can be lost to follow-up. Length of follow-up is 
taken into account in the Kaplan-Meier life-table method1–3 
for estimating the proportion of patients who experience an 
event by time since randomisation. Technically, any survival 
plot can be extended right through to the longest follow-up 
time, and fi ve trials we surveyed did just that. However, this 
extension is not good statistical practice, since for any such 
plot the eye is drawn to the right (ie, where the plot fi nishes), 
which is where there is least information and greatest uncer-
tainty. In small trials, much of the right-hand part of the plot 
can depict just a few patients.

For instance, fi gure 2 is a reproduction of the plot of time 
to end-stage renal failure in a trial comparing ramipril with 
conventional treatment.12 The visual impression is that treat-
ments are similar up to 48 months, but thereafter the con-
ventional group develops a striking excess of end-stage renal 
failures, reaching an estimated 50% failure, by 60 months. 
However, the median follow-up was 31 months and only 
25% of patients assigned conventional treatment reached 
48 months’ follow-up. The number reaching 60 months is not 
stated but must be very few. Thus, for both treatment groups, 
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Figure 1 Time to non-fatal myocardial infarction or death in RITA-2 
trial: three ways to display same data.

up—as the most reliably informative, especially if the event 
rate is lower than, say, 30%. To maximise the clarity of infor-
mation, the highest value on the vertical axis should be a round 
number slightly greater than the highest value represented 
by the steepest curve—ie, 9% in fi gure 1. Some might argue 
that the full scale (0–100%) should always be included, but 
this inhibits the ability to discriminate between treatments. 
For instance, the ELITE 2 trial6 included such a plot, 
which helped to hide the apparent survival inferiority of 
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there are inadequate data to estimate reliably the failure rates 
beyond 48 months’ follow-up.

In general, we recommend that survival plots be halted 
once the proportion of patients free of an event, but still in 
follow-up, becomes unduly small. In our experience, this view 
is not universally held, but we hope that our recommendation 
is a good basis for debate.

What constitutes “unduly small” is open to debate and 
depends on the context. It will often be reasonable to  curtail 
the plot when only around 10–20% are still in follow-up. 
For example, suppose in a trial of 500 patients, 100 had the 
event of interest by 2 years of follow-up, but of the remaining 
400 patients, only 80 (20%) were still in follow-up beyond 
2 years. In this case, restriction of the plot to 2 years’ follow-up 
might be sensible. Such a restriction is just for the plot; all 
events should be retained in analysis (eg, nine vs 18 events 
in the ramipril trial should remain the basis for the statisti-
cal inference given in the legend of fi gure 2). In this example, 
the authors’ dilemma is clear, since all the “action” happens 
beyond 48 months. However, were the later follow-up to be 
included in the plot, it should include a note highlighting 
the small number of patients on which the data were based. 
These problems do not arise for trials with an intended fi xed 
length of follow-up (usually quite short), as was the case for 
21 of the trials we surveyed.

Showing the extent of follow-up
So, readers need to be informed about the extent of follow-
up, and stating the median follow-up time is often useful. 
Another helpful device is to display the numbers of patients 
event-free and still in follow-up in each treatment group at 
relevant time points, as shown in fi gures 1 and 3. These num-
bers at risk of the event convey to the reader the increasing 
unreliability of estimates as time gets further from randomi-
sation; most trials we surveyed included this information. 
The numbers on the time axis of the published 4S trial plot13 

reproduced in fi gure 3 show a case for not extending the 

graph to 6 years. Since only a small minority of patients 
reached 6 years’ follow-up, the apparent extra boost in treat-
ment difference in that last year is less reliably estimated. 
Incidentally, plots going downwards with an axis break like 
fi gure 3 make focusing on the main fi nding harder. We needed 
a ruler and calculator to work out that mortality rates after 5 
years were 7.4% on simvastatin and 9.7% on placebo.

Displaying statistical uncertainty
Most outcome results of clinical trials include measures of 
statistical uncertainty—eg, either SEs or CIs—for each treat-
ment group, or a CI for the comparison of groups. However, 
survival plots often fail to include such measures. Hence 
the visual impression of any treatment differences, and how 
they vary over time, can look much more convincing than is 
really the case, especially if the clinical trial has few outcome 
events.

For any time since randomisation, the SE (or 95% CI) for 
the estimated proportion of patients with (or without) the 
event can be calculated.2,3 In principle, such error bands could 
be displayed at all time points for each treatment group, 
but displaying the SE or 95% CI at a few regularly spaced 
time points on the plot for each treatment group is clearer. 
For instance, fi gure 1 (top panel) shows the SE bars for the 
estimated event rate for each treatment at 1, 2, and 3 years’ 
follow-up. As is common in such plots, the smaller numbers 
of patients in follow-up at later time points is refl ected in the 
increasing SE over time.

Although these SEs display each plot’s uncertainty, they 
do not directly display the uncertainty of the treatment 
difference, which is usually of primary interest. In fact, the SE 
of the treatment difference in event rates is equal to the 

Figure 2 Kaplan-Meier estimation of renal survival among patients 
on ramipril or conventional treatment. Relative risk 2·72 (95% CI 
1·22–6·08), p = 0·01.
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square root of the sum of the two squared SEs, but there is 
no conventionally accepted style (nor any easy way) of 
displaying this on a survival plot. One simple rule of thumb 
is that if the treatment difference at a particular time is less 
than the sum of the two plotted SEs (ie, if the plotted SEs 
overlap), the difference is well within the bounds of random 
chance. If the difference is more than twice the sum of the 
SEs (ie, the 95% CIs do not overlap) it is highly signifi cant. 
Whether SEs or 95% CIs should be plotted is open to debate, 
but authors should always make clear which is being used.

One problem here is the focus on the difference between 
treatments at particular arbitrary time points. The overall 
evidence of a treatment difference is usually given by the 
estimated hazard ratio (sometimes called relative risk) and its 
95% CI,14 and by a log-rank test of signifi cance,2,3 as shown in 
the legend of fi gure 2. Thus, an alternative to plotting SEs is to 
present overall treatment comparisons and their uncertainty 
on the survival plot or its legend. Most authors do neither, 
leaving any comment on statistical uncertainty to the text 
only. In fact, only one of the 35 trial reports we surveyed 
included CIs at regular time points on the survival plot, fi ve 
plots included the hazard ratio and its CI, and 16 plots incor-
porated the log-rank p value. 18 plots included none of the 
above. We recommend that future authors include in each sur-
vival plot some indication of statistical uncertainty (panel).

Interpreting the shape of survival plots
The easiest patterns to interpret are those that show no 
apparent difference between treatments or when there is a 
steady divergence between treatments over time. However, 
in many instances, more complex patterns seem to exist: 
the  treatment difference might look greater early on (fi gure 

1), the divergence between treatments might start later on 
(fi gures 2 and 3), or the survival curves might cross. 
Such putative treatment–time interactions need cautious 
interpretation since there are rarely suffi cient data to consoli-
date their true existence.

For instance, in the ramipril trial (fi gure 2), most of ramipril’s 
benefi t seems to have occurred late: nine ramipril failures ver-
sus 11 conventional treatment failures before 48 months, com-
pared with zero failures versus seven failures, respectively, after 
48 months. However, the strength of evidence for this effect is 
limited, since the number of failures is small, the statistical test 
for treatment–time interaction is of borderline signifi cance, 
and such a post-hoc (data-driven) analysis is disputable. So, 
the overall conclusion needs to rest on events during the total 
follow-up rather than after any specifi c time point.

Even for the much larger 4S trial (fi gure 3), caution is 
required in interpreting the visual impression that the treat-
ment effect does not occur until after 18 months’ follow-up. 
There seem to have been 55 deaths in each group in the fi rst 
18 months, and a striking treatment difference thereafter, 
with 201 versus 127 deaths favouring simvastatin.13 A test for 
treatment–time interaction (ie, of whether the hazard ratio is 
different before and after 18 months) is signifi cant (p = 0.03), 
but its validity can be questioned because the 18-month time-
split for the data has been selected post hoc after seeing the 
survival plot. Thus, even in such a large trial, to expect reliable 
estimation of when a treatment effect fi rst begins is unrealis-
tic.15 Indeed, recent evidence from the Heart Protection Study 
indicates that there is an observable treatment difference in 
survival even in early follow-up, which becomes more rapidly 
divergent beyond 2 years (www.hpsinfo.org).
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Summary of recommendations
Survival plots are best presented going upwards, to  •
maximise detail without needing a break in the scale
Plots should only be extended through the period of  •
follow-up achieved by a reasonable proportion of 
participants
The extent of follow-up should be explained—eg, by  •
listing at regular intervals under the time axis the number 
still at risk in each treatment group
Plots should include some measure of statistical  •
uncertainty, otherwise any visual signs of treatment 
differences might look more convincing than they really 
are. Either SEs or CIs should be displayed at regular time 
points, or an overall estimate of treatment difference 
(eg, relative risk) with its 95% CI should be given
Authors and readers should be cautious in interpreting  •
the shape of survival plots. The lack of follow-up and 
poorer estimation to the right-hand end, the lack of any 
prespecifi ed hypothesis, and the lack of statistical power 
to explore subtleties of treatment difference other than 
the overall comparison should be recognised
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Abstract
Objectives To analyse simple national statistics and survival data collected in the central cardiac audit database after 
treatment for congenital heart disease and to provide long term comparative statistics for each contributing centre.
Design Prospective, longitudinal, observational, national cohort survival study.
Setting UK central cardiac audit database.
Main outcome measures Survival at 30 days and one year after treatment in the year April 2000–March 2001, assessed 
by using both volunteered life status and independently validated life status through the Offi ce for National Statistics, using 
the patient’s unique NHS number, or the general register offi ces of Scotland and Northern Ireland. Institutional results 
following a group of six benchmark operations and three benchmark catheterisation procedures.
Results Since April 2000 data have been received from all 13 UK tertiary centres performing cardiac surgery or therapeutic 
cardiac catheterisation in children with congenital heart disease. Altogether 3666 surgical procedures and 1828 therapeutic 
catheterisations were performed. Central tracking of mortality identifi ed 469 deaths, 194 occurring within 30 days and 
275 later. Forty two of the 194 deaths within 30 days were detected by central tracking but not by volunteered data. 
For surgery overall, survival at 30 days was 94.9%, falling to 91.2% at one year; this effect was most marked for infants. 
For therapeutic catheterisation survival at 30 days was 99.1%, falling to 98.1% at one year. Survival of individual centres or 
individual operators did not differ from the national average after benchmark procedures.
Conclusions Independent data validation is essential for accurate survival analysis. One year survival gives a more realistic 
view of outcome than traditional perioperative mortality. Currently no detectable difference exists in survival between any of 
the 13 UK tertiary congenital heart disease centres, but confi dence intervals for small centres are wide, limiting our power 
to detect underperformance from analysis of a single year’s data. Appropriately resourced, focused national audit is capable 
of accurate data collection on which nationwide, long term quality control can be based.

Introduction
Monitoring of survival rates after cardiac surgery was 
introduced in the United Kingdom in 1977 with voluntary 
submission of data to the Society of Cardiothoracic Surgeons 
of Great Britain and Ireland. The central cardiac audit 
database was established by the British Cardiac Society, the 

Society of Cardiothoracic Surgeons, and the British Paediatric 
Cardiac Association to provide national analysis of outcomes 
of cardiac surgery and therapeutic cardiac catheterisation. 
It differs in three major aspects from previous national audit 
projects: data are collected electronically in a secure format; 
mortality and reintervention are tracked centrally by using 
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a unique patient identifi er (the NHS number); and inde-
pendent data validation is used. In 2000 the Department 
of Health funded the central cardiac audit database to 
collate data from all centres for congenital heart disease in 
the United Kingdom. This report contains the fi rst year’s data 
(1 April 2000 to 31 March 2001), with centrally tracked one 
year survival. The results are presented on behalf of the Society 
of Cardiothoracic Surgeons, the British Paediatric Cardiac 
Association, and all contributing centres, each of which gave 
consent to publication of identifi able, centre specifi c data.

Methods
Data collection
We designed a minimum dataset of 20 fi elds with the simple 
aims of the project in mind. All 13 congenital heart disease 
centres in England, Scotland, and Northern Ireland partici-
pated. To ensure patient confi dentiality the central cardiac 
audit database employs advanced data encryption technol-
ogy to control access to data through a secure key system. We 
used lists with fi xed choices consisting of all but the rarest 
and most complex combinations of diagnoses and procedures 
to minimise the potential complexities of diagnostic and 
procedural coding for congenital heart disease.

Data validation
The minimum dataset included date of death, but we linked 
with the Offi ce for National Statistics by using NHS numbers 
to assess mortality wherever possible. We compared 
volunteered mortality data with centrally tracked data. In 
Northern Ireland and Scotland we used the general register 
offi ces to track mortality centrally.

The central cardiac audit database includes other forms 
of independent data validation carried out by visiting 
centres, when two weeks’ submitted data, chosen at random, 
are compared with hospitals’ written medical records, with 
operating theatres’ records, and with laboratory records on 
cardiac catheterisation.

We checked entries in the logbooks for operating theatres 
and catheter laboratories for the entire year in each centre, 
to ensure complete ascertainment of caseload. We also com-
pared submitted data with nationally held hospital episode 
statistics whenever these were accessible.

Data analysis
We used the online Lotus Domino version of the central 
cardiac audit database to collect data and transferred these 

Survival for neonates, infants, all children under 1 year, and children between 1 year and 16 years undergoing surgery or 
therapeutic catheterisation

Age No. of procedures % survival at 30 days (99% CI) % survival at 1 year (99% CI)

All surgery (bypass and non-bypass)
All ages 3666 94.9 (94.5 to 95.1) 91.2 (90.6 to 91.5)
Neonate and infant: 2073 93.1 (92.4 to 93.4) 87.7 (85.2 to 89.8)
 Neonate   780 90.9 (89.4 to 91.5) 86.1 (84.1 to 87.2)
 Infant 1293 94.5 (93.6 to 94.7) 88.7 (87.4 to 89.4)
Child 1561 97.7 (97.0 to 97.7) 96.1 (95.4 to 96.2)
Bypass surgery
All ages 2664 94.7 (94.2 to 94.9) 91.8 (91.1 to 92.1)
Neonate and infant: 1292 92.1 (91.1 to 92.5) 87.8 (84.6 to 90.3)
 Neonate   383 87.1 (84.3 to 88.4) 82.8 (79.4 to 84.8)
 Infant   909 94.4 (93.3 to 94.7) 90.0 (88.4 to 90.6)
Child 1353 97.5 (96.8 to 97.5) 96.0 (95.1 to 96.1)
Non-bypass surgery
All ages 1002 95.5 (94.6 to 95.7) 89.7 (88.3 to 90.4)
Neonate and infant:   781 94.6 (93.4 to 94.9) 87.6 (83.4 to 90.8)
 Neonate   397 94.7 (92.5 to 95.0) 89.3 (86.5 to 90.3)
 Infant   384 94.6 (92.5 to 94.9) 85.9 (82.7 to 87.3)
Child   208 98.8 (95.0 to 98.8) 97.4 (93.2 to 97.5)
Catheter intervention
All ages 1828 99.1 (98.7 to 99.1) 98.1 (97.6 to 98.1)
Neonate and infant:   472 98.3 (96.7 to 98.3) 96.1 (92.5 to 97.9)
 Neonate   178 98.8 (94.9 to 98.8) 97.3 (93.0 to 97.4)
 Infant   294 98.0 (95.4 to 98.0) 95.3 (92.4 to 95.6)
Child 1320 99.4 (98.8 to 99.4) 98.8 (98.1 to 98.7)

Survival is calculated based only on cases where follow up reaches 30 days or one year and no further intervention has taken place. 
The Wilson score method was used to calculate 99% confi dence intervals for survival.
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for analysis to SPSS 10.0 for Microsoft Windows. We used 
Wilson’s score method to calculate confi dence intervals for 
survival.1, 2 We used 99% confi dence intervals (table) to make 
allowances for the high number of multiple comparisons, to 
minimise false positive results. We did not consider an indi-
vidual survival value to be signifi cantly different from the 
mean if the confi dence intervals overlapped the mean.

We used analysis of survival after “benchmark” operations 
to compare results from different centres, to eliminate the 
effect of different case mix. We chose six benchmark proce-
dures for surgery (repairs of atrial septal defect, ventricular 
septal defect, atrioventricular septal defect, tetralogy of Fallot, 
simple transposition of the great arteries, and coarctation) 
and three for therapeutic catheterisation (atrial septal defect 
closure, arterial duct closure, and pulmonary balloon valvo-
plasty). We did not undertake detailed risk stratifi cation as no 
validated method exists.

We calculated 30 day postoperative survival to facilitate 
comparison with results from previous UK registry data and to 
comply with practice in the United States.3 Central tracking of 
mortality has, however, also allowed us to plot one year survival 
curves, in contrast to previous registry analyses. We included 
foreign nationals but censored them from survival analysis after 
the perioperative period unless specifi c follow up data were 
available (central tracking was not possible for this group). We 
analysed individual operators’ results anonymously, but each 
centre agreed to be identifi ed. We have not calculated freedom 
from reintervention statistics for this report as follow up is cur-
rently too short to allow meaningful interpretation of results.

Results
Data collection and quality
Overall completeness of the dataset was 96.8%, with 
completeness for individual data fi elds ranging from 75% 
(for NHS number) to 100%. Data were received for a total of 
5494 procedures, of which 3666 were surgical and 1828 were 
therapeutic catheterisations.

We have reported all cause mortality, choosing not to 
attempt detailed investigation of cause of death and its rela-
tion to treatment. We found substantial differences in vol-
unteered and centrally tracked mortality, with seven of 11 
centres in England under-reporting death within 30 days. 
Central tracking of mortality identifi ed 469 deaths, 194 
occurring within 30 days and 275 later. Forty two of the 194 
deaths within 30 days were detected by central tracking but 
were not in the volunteered data. Nineteen of these patients 
were discharged alive but subsequently died within 30 days 
of the operation. The remainder had been incorrectly coded 
as alive at discharge; using reported discharge status would 
have underestimated 30 day mortality by 22%. Data on hos-
pital episode statistics were available for 2716 patients and 
under-reported death within 30 days by 9%, classifying 1% of 
surviving patients as deceased. Hospital episode statistics data 
also under-reported the total number of procedures by 10%. 
During validation visits we found a total of 143 procedures to 
be missing from the data submissions to the central cardiac 

audit database, predominantly related to systematic errors in 
data collection. The visits resulted in submission of missing 
or revised data from all of the 13 centres.

Survival
Figures 1–3 show national survival curves after cardiopulmo-
nary bypass surgery, non-cardiopulmonary bypass surgery 
or therapeutic catheterisation. The table shows survival at 
30 days and one year after all procedures. We assessed 
benchmark procedure survival anonymously for individual 
operators (41 surgeons and 63 cardiologists) as well as for 
different centres. No signifi cant difference from the national 
mean survival was detectable for any individual. Figures 4 
and 5 and fi gures A-I (see bmj.com), respectively, show 
individual centre’s survival data for pooled and individual 
benchmark procedures.

Figure 1 One year survival after cardiopulmonary bypass surgery for 
age groups <1 month, 1 month–1 year, and 1–16 years for the United 
Kingdom.
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Figure 2 One year survival for non cardiopulmonary bypass surgery 
for age groups <1 month, 1 month–1 year, and 1–16 years for the 
United Kingdom.
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an almost unique opportunity to carry out effective and 
believable national audit because we have a single health care 
system with an Offi ce for National Statistics where the life 
status of an individual patient, based on their NHS number, 
is known.

With appropriate precautions central tracking is possible 
while maintaining patient confi dentiality.

Diagnostic and procedure coding
Several groups have devised coding systems for congenital 
heart disease.3, 6, 7 The central cardiac audit database plans 
to adopt the coding system of the Association for European 

Figur 3 One year survival for therapeutic catheterisation for age 
groups <1 month, 1 month–1 year, and 1–16 years for the United 
Kingdom.
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Figure 4 Survival at 30 days and at one year reported by individual 
centre, with 99% confi dence intervals for all benchmark surgical 
procedures. The shaded areas represent the national means with 
99% confi dence intervals. If a centre’s confi dence intervals overlap 
the shaded area their survival does not differ statistically from the 
national mean. For a list of the abbreviations see bmj.com.
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Discussion
Data quality
We found a striking difference in deaths identifi ed by 
centres’ own records and by central tracking. This was most 
marked when death occurred after the perioperative period, 
but deaths were missing from submitted data even when 
death occurred within 30 days. It seems inevitable that pre-
vious registry reports (including the register of the Society 
of Cardiothoracic Surgeons, used in the Bristol inquiry) 
that have relied on voluntary reporting of death have also 
under-reported mortality, casting doubt on their validity. The 
introduction of the NHS number as a unique and permanent 
patient identifi er and the ability to establish electronic linkage 
with the Offi ce for National Statistics is a major advance in 
tracking patients’ outcomes.

Risk stratifi cation
The use of benchmark procedures minimises the effect of 
varying case mix for the purposes of comparison of outcomes 
in different centres. Attempts have been made to establish a 
consensus view of risk assessment in the United States4 and 
case complexity in the United Kingdom.5 These protocols, 
applied to the data in the central cardiac audit database 
that have been accumulated over several years, should 
facilitate development and validation of risk stratifi cation 
for the future.

Patient confi dentiality
We did not include patients’ consent for data submission to 
the central cardiac audit database in our protocol. Our cur-
rent understanding of the Data Protection Act 1998 is that 
patients’ consent is not required if anonymised data are used 
for the purpose of research or audit. The exception to ano-
nymising data is the NHS number, which we have protected 
by encryption with a key held only by the data managers and 
used only for record linkage. In the United Kingdom we have 
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We believe that this study is the fi rst to present validated, 
centre specifi c survival data for nationwide treatment of 
congenital heart disease. Population based, 45 year, actu-
arial survival has been reported for the whole of Finland,8 
but individual centres’ performance was not included. Most 
previous reports have concentrated on multicentre, mean 
perioperative mortalities (defi ned as death within 30 days of 
operation),9 and a similar approach was used for the register 
of the Society of Cardiothoracic Surgeons.10 Although this 
simplistic approach may be convenient, our data show how 
misleading 30 day results may be as a descriptor of overall 
outcome.

We calculated 99% confi dence intervals for the purpose 
of assessing survival in different centres. Even at this level, 
having performed a total of 178 comparisons, we think that it 
is likely that we will generate spuriously signifi cant results: we 
calculate that the chance of at least one spuriously signifi cant 
difference in survival is 83% (this would have been 99.99% 
had we used 95% confi dence intervals).

This early data analysis has concentrated on survival, 
which is a crude indicator of overall performance. For smaller 
centres, as well as for individual operators, analysis of a single 
year’s data has limited power to detect underperformance 
by institutions or individual operators and year on year 
analysis will be necessary to provide more robust reassur-
ance. Freedom from reintervention is likely to be a power-
ful indicator of overall performance, but several years’ data 
will be required before our capability to track reintervention 
can be put to use.

Figure 5 Survival at 30 days and at one year reported by individual 
centre, with 99% confi dence intervals for all benchmark catheter 
procedures. The shaded areas represent the national means with 
99% confi dence intervals. If a centre’s confi dence intervals overlap 
the shaded area their survival does not differ statistically from the 
national mean. For a list of the abbreviations see bmj.com.
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Paediatric Cardiology 7 from 2004, to facilitate future 
 international compatibility of data.

Outcomes after treatment
Centre specifi c data analysis shows that quality of treatment 
is high throughout the United Kingdom; no centre and no 
individual operator has detectably different survival from the 
national mean after benchmark procedures. We have been 
unable to assess accurately how our results compare with 
those of other nations, although our data seem to compare 
favourably with unvalidated registry reports from North 
America and Europe.

What is already known on this topic
The validity of previous voluntary registers of survival after 
surgery has long been held to be potentially inaccurate

The Bristol inquiry report highlighted the inadequacy of 
current national audit, particularly for the treatment of 
congenital heart disease

What this study adds
Volunteered survival data are of little value, sometimes 
overestimating survival by as much as 20%

Data validation is essential for national or local audit of 
survival and has been made far easier by the introduction of 
the NHS number and the ability to use it to create electronic 
links to the Offi ce for National Statistics

Traditionally reported perioperative (30 day) mortality can 
give a misleadingly optimistic view of prognosis to both pro-
fessionals and the public; for infants mortality after treatment 
for heart disease at one year was double that at 30 days

The central cardiac audit database places validated, centre 
specifi c survival results for treatment of children with con-
genital heart disease in the public domain
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Conclusions
Independent validation of data is essential for accurate survival 
analysis. One year survival statistics give a more realistic view 
of outcome than traditional perioperative mortality. At pres-
ent survival is no different between any of the 13 UK tertiary 
centres for congenital heart disease, but confi dence intervals 
are wide, limiting our power to detect underperformance 
from analysis of a single year’s data. Appropriately resourced, 
focused, national audit is capable of accurate data collection on 
which nationwide, long term, quality control can be based.
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Diagnostic and screening statistics

147

For estimating the utility of diagnostic or screening tests, 
we use statistics that describe how closely the test result and 
the presence or absence of the disease are related. These 
statistics come from a special class of methods that are 
used to describe the within-subject agreement between two 
measurements. In evaluating diagnostic and screening tests, 
it is essential that a ‘gold standard’ is used to classify the pres-
ence or absence of the disease. If a gold standard test is not 
available, a proxy gold standard can be used, but the result 
from the test being evaluated must not be included in the 
proxy defi nition.3 It is also essential that the people who 
record the results of the diagnostic or screening test result 
are blinded to the ‘gold standard’ test result, that is, the dis-
ease status of the patient. Blinding avoids bias that may result 
from expectation if people who are responsible for interpret-
ing the test result have prior knowledge of whether the dis-
ease is present or absent.

Aims

To understand how to calculate and interpret the results of 
statistics that describe the utility of diagnostic tests used in 
clinical practice and screening tests used in populations.

For diagnostic or screening tests to be effi cient, it is 
important to have accurate information about their utility. 
Most diagnostic and screening tests are inherently imper-
fect, so knowledge of the degree of accuracy in predicting 
disease is important for helping health care practitioners to 
interpret the value of a positive or a negative test result and 
to decide whether to recommend further diagnostic tests or 
treatments.Learning objectives

On completion of this unit, participants will be able to 
understand:

the differences between the application of diagnostic    •

and screening tests;
why positive and negative predictive values have    •

limited applicability;
why sensitivity, specifi city and likelihood ratios are    •

robust statistics for describing the utility of diagnostic 
and screening tests;
the ways in which sample size affects the precision of    •

diagnostic and screening statistics.

Background

In clinical medicine, it is often important to know the 
effi ciency of a screening or diagnostic test in predicting 
a medical condition. In general, a screening test is used to 
identify non-symptomatic people in a population who may 
have a disease. On the other hand, a diagnostic test is used to 
identify a disease in patients who have presented to a clini-
cal practice because they have symptoms that are consistent 
with a disease or because they have a positive result from a 
screening test. Diagnosis is the second step in the pathway to 
confi rm or reject the indication of abnormality.1

The objectives of diagnostic and screening tests may include 
the detection or exclusion of disease and the assessment of 
prognosis.2 For example, a psychological test could be used as a 
diagnostic test to help a clinician decide whether a patient has 
evidence of clinical depression. An X-ray may be used to iden-
tify the presence of pneumonia or a bone fracture. In commu-
nity settings, screening tests such as mammograms are used 
for the early detection of disease in the general population.

Glossary

Term Defi nition

Screening test Test used for early identifi cation of 
disease in a population without 
symptoms.

Diagnostic test Test used to confi rm disease in people 
who present with signs or symptoms.

Gold standard Test regarded as the most accurate 
method available for classifying people 
as disease positive or negative.
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Diagnostic and screening statistics
In computing diagnostic and screening statistics, the 
variable indicating disease status is best coded as 0 (or 1) 
for disease present as measured by the gold standard or 
test positive, and 1 (or 2) for disease absent or test negative. 
When using this coding schedule, the most commonly used 
statistical packages will provide a table as shown in 
Table 10.1 where the group with disease present is represented 
in the left-hand data column of the table and the group who 
do not have the disease is represented in the right-hand data 
column. Similarly, the group who are test positive are repre-
sented on the top data row of the table and the group who 
are test negative are represented on the bottom data row of 
the table. The layout of disease positive and negative groups 
in Table 10.1 is commonly used in clinical epidemiology, 
and is essentially the same format that we have used to cal-
culate statistics, such as a chi-square value and odds ratio as 
discussed in Units 3 and 4.

Positive and negative predictive values
In estimating the utility of a test, both positive predictive 
value (PPV) and negative predictive value (NPV) can be 
calculated. From Table 10.1, these values are calculated as 
follows:

Positive predictive value (PPV) = a/(a + b)
Negative predictive value (NPV) = d/(c + d)

PPV is the proportion of test-positive patients in 
whom the disease is present and NPV is the proportion 
of test-negative patients in whom the disease is absent. As 
such, these two tests ‘look forwards’ in that PPV is the prob-
ability that a patient will have a disease if they have a positive 
test result and NPV is the probability that a patient will not 
have a disease if they have a negative test result.

The statistics PPV and NPV indicate the probability that 
the test will make a correct diagnosis,4 and therefore it seems 
intuitive that these values would be useful statistics. However, 
PPV and NPV have serious limitations because their inter-
pretation is based on the proportion of the sample with and 
without disease, and they are therefore infl uenced by the 
prevalence of the disease in the sample. The PPV becomes 
larger when the per cent of patients in the sample who have 
the disease is high and lower when the per cent of patients 
in the sample who have the disease is small. As such, PPV 

and NPV are heavily infl uenced by the sampling criteria and 
the inherent characteristics of the population in addition to 
the utility of the test.

For this reason, these statistics should only be calculated 
if the study sample is a random population sample. These 
statistics should not be calculated from a case-control study 
in which groups of patients and healthy people are recruited 
independently. This design is commonly used in studies 
designed to assess diagnostic tests. If PPV and NPV are cal-
culated from a study in which a selected sample is enrolled, 
and therefore the per cent with disease is different from 
the prevalence of disease in the population, the results can 
rarely be generalised to other settings with different patient 
profi les or compared against the diagnostic utility of other 
diagnostic tests.

Table 10.1 Diagnostic statistics

Disease present Disease absent Total

Test positive a b a + b
Test negative c d c + d
Total a + c b + d N

TAKE HOME LIST

PPV and NPV can only be generalised to other settings • 
when they are calculated from a random population 
sample.

PPV and NPV will change if the prevalence of the disease • 
changes. When the per cent of patients in the sample 
who have the disease increases, PPV will increase and NPV 
will decrease.

PPV is infl ated when the frequency of people with disease • 
in the sample is higher than in the general population.

Sensitivity and specifi city
Because PPV and NPV have serious limitations in their 
interpretation, the statistics most often used to describe the 
utility of diagnostic and screening tests are sensitivity and 
specifi city.5 These diagnostic statistics can be computed from 
Table 10.1 as follows:

Sensitivity = a/(a + c)
Specifi city = d/(b + d)

Sensitivity indicates how likely a patient is to have a 
positive test if they have the disease and specifi city indicates 
how likely the patient is to have a negative test if they do 
not have the disease. Thus, these two statistics ‘look back-
wards’ in that they describe the proportion of patients in 
each disease category who are test-positive or test-negative. 
Sensitivity is computed from only the people in whom the 
disease is present and specifi city is computed from only 
the people in whom the disease is absent and therefore 
neither statistic is infl uenced by the prevalence of the disease 
in the sample.

The notation shown in Table 10.1 can be extended to show 
the terminology often used with sensitivity and specifi city as 
shown in Table 10.2. Because the interpretation of sensitivity 
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and specifi city is not necessarily intuitive, it is often helpful if 
the classifi cation of true-positives (TP), false-positives (FP), 
true-negatives (TN) and false-negatives (FN) are calculated 
for each quadrant of table.6 The false-negative group is the 
proportion of patients who have the disease and who have 
a negative test result. The false-positive group is the propor-
tion of patients who do not have the disease and who have a 
positive test result.

From Table 10.2, it can be seen that the rate of false-
negatives (FN) is the complement of the rate of true-positives 
(TP) for patients who have the disease. Similarly, the rate of 
false-positives (FP) is the complement of the rate of true-
negatives (TN) for patients who do not have the disease. It is 
important to note that there is a trade-off between the rate of 
true-positives and the rate of true-negatives, that is, between 
sensitivity and specifi city. As sensitivity increases, specifi city 
will decrease and vice versa.

Unravelling the meanings of the terms used for diagnostic 
and screening tests can be confusing and informative dia-
grams can help in understanding the concepts.7 The termi-
nology used for sensitivity and specifi city is not logical in that 
the ‘opposites’ rule applies in remembering the meaning of 

the terms. Sensitivity describes the rate of true test-positives 
in the group with the disease. However, sensitivity has a ‘n’ in 
it and applies to the true-positive group, which begins with 
‘p’. Similarly, specifi city describes the rate of true-test nega-
tives in the group without the disease but has a ‘p’ in it and 
applies to the true-negative group, which begins with ‘n’.

In the fi eld of clinical epidemiology, SnNout and SpPin 
are terms that have been coined to aid in the interpretation 
of sensitivity and specifi city.8 The term SnNout stands for 
Sensitivity-Negative-out. The interpretation is that if the 
test has a high sensitivity (true-positive rate) and therefore a 
low false-negative rate, a negative test result will rule out the 
disease or diagnosis. A test that is used to screen a popula-
tion in which many people will not have the disease needs to 
have high sensitivity so that it will identify most people 
with the disease. It is counter-intuitive that although sen-
sitivity needs to be high in a test to rule out a disease, this 
statistic is calculated solely from the column of patients with 
the disease.

The term SpPin stands for Specifi city-Positive-in. The 
interpretation is that if the test has a high specifi city (true-
negative rate) and therefore a low false-positive rate, a positive 
result will rule in the disease. A test that is used to diagnose a 
disease in patients with symptoms needs to have a low false-
positive rate so that it will identify most people who do not have 
the disease. Although specifi city needs to be high for a diag-
nostic test to rule in a disease, this statistic is calculated solely 
from the column of patients without the disease.

The interpretation of sensitivity and specifi city may not 
seem directly useful, but these statistics have the advantage 
that they can be compared between different clinical set-
tings and between studies with different inclusion criteria 
and in which the prevalence of the disease may be different. 
Sensitivity and specifi city can also be used to compare the 
diagnostic and screening utility of different tests. Although 
sensitivity and specifi city are not directly affected by preva-
lence and are therefore less infl uenced by sampling bias than 
PPV and NPV, they may still change if the same test is applied 
in different clinical settings with different types of patients, for 
example primary, secondary or tertiary health care settings.9

Glossary

Term Defi nition

Positive 
predictive value

Proportion of test-positive people who 
have the disease.

Negative 
predictive value

Proportion of test-negative people who 
do not have the disease.

Sensitivity Proportion of disease-positive people who 
are test-positive.

Specifi city Proportion of disease-negative people 
who are test-negative.

Likelihood 
ratio

Probability of a positive test in a person 
with the disease compared to the 
probability of a positive test in a person 
without disease.

Table 10.2 Terms used in diagnostic statistics

Disease present Disease absent Total

Test-positive a
TP
(true +ve)
Sensitivity

b
FP
(false +ve)
1  Specifi city

Test-negative c
FN
(false ve)
1  Sensitivity

d
TN
(true ve)
Specifi city

Total a + c b + d N

TAKE HOME LIST

Sensitivity and specifi city are not infl uenced by the • 
prevalence of disease in the sample and can be compared 
between different settings and different tests.

A high sensitivity will help to rule out a disease.• 

Sensitivity is computed from the group of people with the • 
disease.

A high specifi city will help to rule in a disease.• 

Specifi city is computed from the group of people without • 
the disease.
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Interpretation of sensitivity and specifi city in 
screening tests
Although mammography is widely used as a screening test 
for the early identifi cation of breast cancers, the sensitivity of 
this test ranges from 75% to 90% depending on the age and 
family history of the person being screened.10 However, mam-
mography also has a high specifi city of 90–95%.11 The interpre-
tation of these statistics is that the rate of false-negative results 
(missed tumours) in a screened population will be 10–25% and 
the rate of false-positive results (falsely detected tumours) will 
be 5–10%. On average, it is thought that about 7% of women 
who are screened will be called back to undergo a diagnostic 
test, such as a needle biopsy, for a false-positive result and that 
10–20% of cancers will be missed with  mammography. The 
incidence of breast cancer, as well the specifi city and sensitivity 
of mammograms, is lower in women under 50. Thus, the cost 
effectiveness of screening women under 50 years of age who 
have false-positive results and who are found later to be cancer 
free has been questioned.12 In addition, false-positive results 
may cause anxiety and stress, as well as the need for unnec-
essary tests such as surgical biopsies, which induce additional 
costs to the health care system.12Although magnetic resonance 
imaging (MRI) is a more sensitive test in that it has a higher 
rate of true-positive results than mammograms, the cost 
of MRI screening makes it prohibitive for use as a screening 
tool.13 MRI screening for breast cancer also has a slightly lower 
specifi city than mammograms and therefore produces more 
false-positive results, hence the need for further diagnostic tests 
such as biopsies. In health care practice, the balance between 
the costs and invasiveness of screening and diagnostic tests and 
the potential effects of false-positive and false-negative results 
on people who are tested need to be carefully considered.

Likelihood ratio
When applying diagnostic and screening statistics in clinical 
practice, sensitivity and specifi city have limited clinical use for 
an individual patient, since these statistics are based on the tests 
when used in the population.14 In addition, a problem with sen-
sitivity and specifi city is that each is calculated from separate 
parts of the data and therefore the use of one statistic in isola-
tion from the other ignores all of the information available. To 
combine the information from both statistics, the values can be 
converted into a likelihood ratio in which data from the total 
sample is used to estimate the relative predictive value of the 
test. The likelihood ratio always refers to the likelihood of a 
patient having a disease.14 When a patient has a positive test, the 
positive likelihood ratio (LR+) can be calculated as follows:

Likelihood ratio (LR+) =  Probability of a positive result in 
people with disease/Probability of 
a positive result in people without 
disease

= True-positives/False-positives
= Sensitivity/(1  Specifi city)

Thus, the positive likelihood ratio is simply the ratio of 
the true-positive rate to the false-positive rate. This statis-
tic provides clinical information about an individual person 
because it indicates how likely a positive result will be found 
in a person with the disease compared to a person without 
the disease. A positive likelihood ratio greater than 1 indi-
cates that a positive test result is associated with the pres-
ence of the disease, whereas a positive likelihood ratio of less 
than 1 indicates that a positive test result is associated with 
the absence of a disease. For example, a positive likelihood 
ratio equal to 10 indicates that the person with the disease is 
about 10 times more likely to have a positive test result than a 
person without the disease.

Similarly, when a patient has a negative test result, the neg-
ative likelihood ratio (LR) can be calculated as follows:

Likelihood ratio (LR) =  Probability of a negative result in 
people with disease/Probability of 
a negative result in people without 
disease

= False-negatives/True-negatives
= (1  Sensitivity)/Specifi city

A negative likelihood ratio of less than 1 indicates that 
a negative result is less likely to occur in a person with the 
disease compared to a person without the disease. A negative 
likelihood ratio greater than 10 rules in the disease, while a 
negative likelihood ratio of less than 0.1 generally rules out 
the disease.15 Because a likelihood ratio is derived from sen-
sitivity and specifi city, it also has the advantage that valid 
comparisons of diagnostic and screening statistics between 
different study samples and between different diagnostic 
tests can be made.

In practice, a nomogram can be used to convert the 
pre-test probability of disease in a patient into a post-test 
probability using the likelihood ratio.16 The pre-test prob-
ability will usually be the prevalence of the disease in the 
clinical setting that the patient attends. A nomogram is 
a graphical tool that uses the result of a diagnostic test to 
calculate a person’s probability of having the disease. In a 
nonogram, the pre-test probability that the person has the 
disease is entered on the left axis and is then joined by a 
line to the likelihood ratio on the middle axis. The line is 
then extended to show the post-test probability of disease 
on the right axis.

Sample size considerations
The study sample size from which any statistic is calculated 
has important implications for quantifying the uncertainty 
around the estimate. Because PPV, NPV, sensitivity and 
specifi city are essentially proportions, uncertainty can be 
estimated by calculating 95% confi dence intervals as dis-
cussed in Unit 2. The confi dence interval for each statis-
tic is calculated using the sample size as the denominator. 
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The sample size for sensitivity is the number who are 
disease-positive and for specifi city is the number who are 
disease-negative.

The 95% confi dence intervals can be surprisingly wide 
when the number in a disease-positive or disease-negative 
group is small. For this reason, the number of participants in 
studies designed to measure diagnostic and screening statis-
tics must be large enough to report all of the estimates with 
precision. Although the sample size in each of the disease-
present and disease-absent groups infl uences the width of 
the 95% confi dence intervals for sensitivity and specifi city, 
few investigators appear to consider sample size require-
ments when designing studies to calculate diagnostic and 
screening statistics.17 Thus, there have been calls for better 
methods to be used in the assessment of the utility of diag-
nostic and screening tests including the use of systematic 
reviews to increase precision.2 In addition, a comprehensive 
checklist for the accurate reporting of diagnostic and screen-
ing utility has been developed by a steering group called the 
Standards for Reporting of Diagnostic Accuracy (STARD).18

Reading and questions
Reprint
Grimes DA, Schultz KF. Uses and abuses of screening tests. 
Lancet 2002;359:881–884. (See p. 154.)

The reprint by Grimes and Schultz (2002) discusses the 
advantages and the disadvantages to screening tests and the 
terms – PPV, NPV, sensitivity and specifi city which describe 
the utility of a test. After reading the reprint by Grimes and 
Schultz (2002), answer the following questions.

What are the limitations in classifying people as either 1 
disease-present or disease-absent?
How does a low prevalence rate of disease in a population 2 
affect the PPV?
What would a PPV of 0.50 indicate?3 
What are the advantages and disadvantages of screening 4 
tests in the population?
What problems may arise from early diagnosis as a result 5 
of a positive screening test?

Worked example
Set article
Nassar N, Roberts C, Cameron CA, Olive EC. Diagnostic 
accuracy of clinical examination for detection of non-
cephalic presentation in late pregnancy: Cross sectional 
analytic study. BMJ 2006;333:578–580. (See p. 159.)

The set article by Nassar et al. (2006) reports the diagnos-
tic accuracy of a clinical examination in detecting non-
cephalic (breech, transverse or oblique lie) presentations 
in late pregnancy. This is a nicely designed study in which 

Table 10.3 Sensitivity and specifi city for detecting fetal 
presentation

Non-cephalic Cephalic Total

Examination 
 positive

91
(true +ve = 
91/130 = 0.70)

74
(false +ve = 
74/1503 = 0.05)

165

Examination 
 negative

39
(false ve =
39/130 =0.30)

1429
(true ve = 
1429/1503 = 0.95)

1468

Total 130 1503 1633

a total of 1633 women underwent clinical examination to 
assess fetal presentation. Ultrasonography was then used as 
the gold standard to confi rm the fetal position. To reduce 
bias, the ultrasonographers were blinded to results of the 
clinical examination.

Using Table 10.2 as a template, the numbers from which 
overall sensitivity and specifi city are calculated were taken 
from the table in the paper and are shown in Table 10.3.

Thus,
PPV = 91/165 = 0.55
NPV = 1429/1468 = 0.97
Sensitivity = 91/ 130 = 0.70
Specifi city = 1429/1503 = 0.95
Positive likelihood ratio = 0.70/0.05 = 14.0.

Exercise

Using the section of the table in the reprint that stratifi es 
sensitivity and specifi city by maternal body mass index, 
create tables similar to Table 10.3 to complete Table 10.4 
on page 152.

After completing Table 10.4, answer the following questions:
Are the statistics PPV and NPV appropriate to describe  •

diagnostic utility in the sample studied?
What populations would these statistics generalise to? •

Does calculation of the likelihood ratio infl uence how you  •

would interpret the results of the study?
Do you agree with the authors’ conclusion that an  •

ultrasound is only required to determine fetal position in 
late pregnancy in overweight and obese women?

Critical appraisal

The checklist describes some of the questions that can be 
asked when critically appraising a report of diagnostic sta-
tistics. Work through the checklist to review the paper by 
Nassar et al. (2006) and decide whether the results warrant a 
change in clinical practice.
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Quick quiz

Tick the correct answer for each of the following questions.

A high sensitivity for a diagnostic test means that:1 
your doctor is tuned into your needs;(a) 
if your test is positive, you have a disease;(b) 
the ‘true-positive’ rate for the test is high;(c) 
you probably do not have the disease.(d) 

A high specifi city for a diagnostic test means that:2 
the test is specifi c for the diagnosis of the (a) 

disease;
most people who are test-negative do not have the (b) 

disease;
most people who do not have the disease are (c) 

test-negative;
a positive result indicates that you probably do have (d) 

the disease.

Critical appraisal checklist for an article that reports diagnostic statistics

Study designA. 

Was a ‘gold standard’ used to classify the diagnosis?1. 

Were the test results withheld from the people who decided the diagnosis?2. 

Were standard protocols used for collecting information of both the test 3. 
and the diagnosis?

Was the interval between the test and the diagnosis short enough so that the 4. 
diagnosis would not have changed?

Are the inclusion and exclusion criteria clearly described?5. 

Were the participants recruited randomly, by consecutive sampling or by 6. 
another method?

Statistical methodsB. 

Is full information of the positive and negative predictive values and of 7. 
sensitivity and specifi city presented?

Are confi dence intervals around these estimates shown?8. 

ResultsC. 

Is a cross-tabulation provided to aid in the interpretation of the statistics?9. 

Are there suffi cient numbers of participants to describe the diagnostic 10. 
statistics with precision?

InterpretationD. 

Is the clinical applicability of the diagnostic statistics interpreted correctly?11. 

Table 10.4 PPV, NPV and likelihood ratio for detecting fetal presentation

Sensitivity Specifi city PPV NPV Likelihood ratio

Overall 0.70 0.95 0.55 0.97 14.0
Body mass index
 Thin 0.69 0.95
 Normal weight 0.73 0.96
 Overweight 0.68 0.97
 Obese 0.38 0.89
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If the positive predictive value (PPV) is high, a positive test 3 
result means that:

the disease is almost certainly present;(a) 
the disease is more likely to be present if the PPV was (b) 

calculated from a random population sample;
you cannot be certain that the disease is absent;(c) 
another test is needed to decide the presence of (d) 

the disease.

If the negative predictive value (NPV) is low, a negative 4 
test result means that:

another test is needed to rule out the disease;(a) 
you almost certainly do not have the disease;(b) 
you cannot be certain that the disease is present;(c) 
there is a low probability that the disease is absent.(d) 
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Screening is a double-edged sword, sometimes wielded 
clumsily by the well-intended. Although ubiquitous in 
contemporary medical practice, screening remains widely 
misunderstood and misused. Screening is defi ned as tests 
done among apparently well people to identify those at 
an increased risk of a disease or disorder. Those identifi ed 
are sometimes then offered a subsequent diagnostic test or 
procedure, or, in some instances, a treatment or preventive 
medication.1 Looking for additional illnesses in those with 
medical problems is termed case fi nding;2,3 screening is lim-
ited to those apparently well.

Screening can improve health. For example, strong indi-
rect evidence lends support to cytology screening for cervical 
cancer. Insuffi cient use of this screening method accounts for 
a large proportion of invasive cervical cancers in industria-
lised nations.4 Other benefi cial examples include screening for 
hypertension in adults; screening for hepatitis B virus anti-
gen, HIV-1, and syphilis in pregnant women; routine urine 
culture in pregnant women at 12–16 weeks’ gestation; and 
measurement of phenylalanine in newborns.5 However, inap-
propriate screening harms healthy individuals and squanders 
precious resources. The nearly universal antenatal screening 

for gestational diabetes (a diagnosis in search of a disease)6 
in the USA7 exemplifi es the widespread confusion about the 
nature and aim of screening. Here, we review the purposes of 
screening, the selection of tests, measurement of validity, the 
effect of prevalence on test outcome, and several biases that 
can distort interpretation of tests.

Ethical implications
What are the potential harms of screening?
Screening differs from the traditional clinical use of tests in 
several important ways. Ordinarily, patients consult with 
clinicians about complaints or problems; this prompts test-
ing to confi rm or exclude a diagnosis.8 Because the patient is 
in pain and requests our help, the risk and expense of tests 
are usually deemed acceptable by the patient. By contrast, 
screening engages apparently healthy individuals who are not 
seeking medical help (and who might prefer to be left alone). 
Alternatively, consumer-generated demand for screening, 
such as for osteoporosis and ovarian cancer, might lead to 
expensive programmes of no clear value.5,9 Hence, the cost, 
injury, and stigmatisation related to screening are especially 
important (though often ignored in our zeal for earlier diag-
nosis); the medical and ethical standards of screening should 
be, correspondingly, higher than with diagnostic tests.10 
Bluntly put: every adverse outcome of screening is iatrogenic 
and entirely preventable.

Screening has a darker side that is often overlooked.2 It 
can be inconvenient (the O’Sullivan screen for gestational 
diabetes), unpleasant (sigmoidoscopy or colonoscopy), and 

Screening tests are ubiquitous in contemporary practice, yet the principles of screening are widely misunderstood. 
Screening is the testing of apparently well people to fi nd those at increased risk of having a disease or disorder. Although 
an earlier diagnosis generally has intuitive appeal, earlier might not always be better, or worth the cost. Four terms describe 
the validity of a screening test: sensitivity, specifi city, and predictive value of positive and negative results. For tests with 
continuous variables—eg, blood glucose—sensitivity and specifi city are inversely related; where the cutoff for abnormal 
is placed should indicate the clinical effect of wrong results. The prevalence of disease in a population affects screening 
test performance: in low-prevalence settings, even very good tests have poor predictive value positives. Hence, knowledge 
of the approximate prevalence of disease is a prerequisite to interpreting screening test results. Tests are often done in 
sequence, as is true for syphilis and HIV-1 infection. Lead-time and length biases distort the apparent value of screening 
programmes; randomised controlled trials are the only way to avoid these biases. Screening can improve health; strong 
indirect evidence links cervical cytology programmes to declines in cervical cancer mortality. However, inappropriate 
application or interpretation of screening tests can rob people of their perceived health, initiate harmful diagnostic testing, 
and squander health-care resources.
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expensive (mammography). For example, a recent Markov 
model revealed that new screening tests for cervical cancer 
that are more sensitive than the Papanicolaou test (and thus 
touted as being better) will drive up the average cost of detect-
ing an individual with cancer.11 Paradoxically, these higher 
costs could make screening unattainable by poor women who 
are at highest risk.4 The net effect might be more instances 
of cancer.

A second wave of injury can arise after the initial screening 
insult: false-positive results and true-positive results leading 
to dangerous interventions.2 Although the stigma associated 
with correct labeling of people as ill might be acceptable, 
those incorrectly labeled as sick suffer as well. For example, 
labeling productive steelworkers as being hypertensive led to 
increased absenteeism and adoption of a sick role, indepen-
dent of treatment.12,13 More recently, women labeled as having 
gestational diabetes reported deterioration in their health and 
that of their infants over the 5 years after diagnosis.14 By what 
right do clinicians rob people of their perceived health, and 
for what gain?2

Screening can also lead to harmful treatment. Treatment 
of hyperlipidaemia with clofi brate several decades ago pro-
vides a sobering example. Treatment of the cholesterol count 
(a risk factor, rather than an illness itself) inadvertently led to 
a 17% increase in mortality among middle-aged men given 
the drug.2 This screening misadventure cost the lives of more 
than 5000 men in the USA alone.2 Because of these mishaps, 
reviews of screening practices have recommended that clini-
cians be more selective.5,15

Criteria for screening
If a test is available, should it be used?
The availability of a screening test does not imply that it 
should be used. Indeed, before screening is done, the strategy 
must meet several stringent criteria. One checklist separates 
criteria in three parts: the disease, the policy, and the test.1 The 
disease should be medically important and clearly defi ned, 
and its prevalence reasonably well known. The natural history 
should be known, and an effective intervention must exist. 
Concerning policy, the screening programme must be cost 
effective, facilities for diagnosis and treatment must be read-
ily available, and the course of action after a positive result 
must be generally agreed on and acceptable to those screened. 
Finally, the test must do its job. It should be safe, have a rea-
sonable cut-off level defi ned, and be both valid and reliable. 
The latter two terms, often used interchangeably, are distinct. 
Validity is the ability of a test to measure what it sets out to 
measure, usually differentiating between those with and with-
out the disease. By contrast, reliability indicates repeatability. 
For example, a bathroom scale that consistently measures 2 kg 
heavier than a hospital scale (the gold standard) provides an 
invalid but highly reliable result.

Although an early diagnosis generally has intuitive appeal, 
earlier might not always be better. For example, what ben-
efi t would accrue (and at what cost) from early diagnosis of 
Alzheimer’s disease, which to date has no effective treatment? 

Sackett and colleagues2 have proposed a pragmatic checklist 
to help decide when (or if) seeking a diagnosis earlier than 
usual is worth the expense and bother. Does early diagno-
sis really benefi t those screened, for example, in survival 
or quality of life? Can the clinician manage the additional 
time required to confi rm the diagnosis and deal with those 
diagnosed before symptoms developed? Will those diagnosed 
earlier comply with the proposed treatment? Has the effective-
ness of the screening strategy been established objectively?5, 15 
Finally, are the cost, accuracy, and acceptability of the test 
clinically acceptable?

Assessment of test effectiveness
Is the test valid?
For over half a century,16 four indices of test validity have 
been widely used: sensitivity, specifi city, and predictive values 
of positive and negative. Although clinically useful (and far 
improved over clinical hunches), these terms are predicated 
on an assumption that is often clinically unrealistic—ie, that 
all people can be dichotomised as ill or well. (Indeed, one 
defi nition of an epidemiologist is a person who sees the entire 
world in a 2 × 2 table.) Often, those tested simply do not fi t 
neatly into these designations: they might be possibly ill, early 
ill, probably well, or some other variant. Likelihood ratios, 
which incorporate varying (not just dichotomous) degrees of 
test results, can be used to refi ne clinicians’ judgments about 
the probability of disease in a particular person.

For simplicity, however, assume a population has been 
tested and assigned to the four mutually exclusive cells in 
fi gure 1. Sensitivity, sometimes termed the detection rate,10 is 

Figure 1 Template for calculation of test validity.
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the ability of a test to fi nd those with the disease. All those with 
disease are in the left column. Hence, the sensitivity is simply 
those correctly identifi ed by the test (a) divided by all those 
sick (a+c). Specifi city denotes the ability of a test to identify 
those without the condition. Calculation of this proportion 
is trickier, however. By analogy to sensitivity, many assume 
(incorrectly) that the formula here is b/(b+d). However, the 
numerator for specifi city is cell d (the true negatives), which 
is divided by all those healthy (b+d).

Although sensitivity and specifi city are of interest to public-
health policymakers, they are of little use to the clinician. 
Stated alternatively, sensitivity and specifi city (population 
measures) look backward (at results gathered over time).8 
Clinicians have to interpret test results to those tested. Thus, 
what clinicians need to know are the predictive values of the 
test (individual measures, which look forward). To consider 
predictive values, one needs to shift the orientation in fi gure 1 
by 90 degrees: predictive values work horizontally (rows), not 
vertically (columns). In the top row are all those with a posi-
tive test, but only those in cell a are sick. Thus, the predictive 
value positive is a/(a+b). The “odds of being affected given a 
positive result (OAPR)” is the ratio of true positives to false 
positives, or a to b.10 For example, in fi gure 1, the OAPR is 
75/5, or 17/1. This corresponds to a positive predictive value 
of 89%. Advocates of use of the OAPR note that these odds 
better describe test effectiveness than do probabilities (pre-
dictive values). In the bottom row of fi gure 1 are those with 
negative tests, but only those in cell d are free of disease. 
Hence, the predictive value negative is d/(c+d).

Learning (and promptly forgetting) these formulas was an 
annual ritual for many of us in our clinical training. If read-
ers understand the defi nitions above and can recall the 2 × 2 
table shell, then they can quickly fi gure out these formulas 
when needed. As a mnemonic, disease goes at the top of the 
table shell, since it is our top priority. By default, test goes on 
the left border.

Through the years, researchers have tried to simplify these 
four indices of test validity by condensing them into a sin-
gle term.8 However, none adequately depicts the important 
trade-offs between sensitivity and specifi city that generally 
arise. An example is diagnostic accuracy, which is the propor-
tion of correct results.3 It is the sum of the correctly identifi ed 
ill and well divided by all those tested, or (a+d)/(a+b+c+d). 
Cells b and c are noise in the system. Another early attempt, 
Youden’s J, is simply the predictive value positive plus the 
predictive value negative minus one.17 The range of values 
extends from zero (for a coin toss with no predictive value) 
to 1.0, where predictive values of both positive and negative 
tests are perfect.

Trade-offs between sensitivity and 
specifi city
Where should the cut-off for abnormal be?
The ideal test would perfectly discriminate between those 
with and without the disorder. The distributions of test results 
for the two groups would not overlap. More commonly 

in human biology, test values for those with and without 
a disease overlap, sometimes widely.18 Where one puts 
the cut-off defi ning normal versus abnormal determines 
the sensitivity and specifi city. For any continuous outcome 
measurement—for example, blood pressure, intraocular 
pressure, or blood glucose—the sensitivity and specifi city 
of a test will be inversely related. Figure 2 shows that placing 
the cut-off for abnormal blood glucose at point X produces 
perfect sensitivity; this low cut-off identifi es all those with 
diabetes. However, the trade-off is poor specifi city: those in 
the part of the healthy distribution in pink and purple are 
incorrectly identifi ed as having abnormal values. Placing 
the cut-off higher at point Z yields the opposite result: all 
those healthy are correctly identifi ed (perfect specifi city), 
but the cost here is missing a proportion of ill individuals 
(portion of the diabetic distribution in purple and blue). 
Placing the cutoff at point Y is a compromise, mislabeling 
some healthy people and some people with diabetes.

Where the cut-off should be depends on the implications 
of the test, and receiver-operator characteristic curves are 
useful in making this decision.19 For example, screening for 
phenylketonuria in newborns places a premium on sensitivity 
rather than on specifi city; the cost of missing a case is high, 
and effective treatment exists. The downside is a large number 
of false-positive tests, which cause anguish and further test-
ing. By contrast, screening for breast cancer should favour 
specifi city over sensitivity, since further assessment of those 
tested positive entails costly and invasive biopsies.20

Prevalence and predictive values
Can test results be trusted?
A badly understood feature of screening is the potent 
effect of disease prevalence on predictive values. Clinicians 
must know the approximate prevalence of the condition of 
interest in the population being tested; if not, reasonable 
interpretation is impossible. Consider a new PCR test for 

Figure 2 Hypothetical distribution of blood glucose concentrations 
in people with and without diabetes. Setting cut-off for abnormal 
at X yields perfect sensitivity at the expense of specifi city. Setting 
cut-off at Z results in perfect specifi city at the cost of lower 
sensitivity. Cut-off Y is a compromise.
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chlamydia, with a sensitivity of 0.98 and specifi city of 0.97 
(a superb test). As shown in the left panel of fi gure 3, a doctor 
uses the test in a municipal sexually transmitted disease clinic, 
where the prevalence of Chlamydia trachomatis is 30%. In this 
high-prevalence setting, the predictive value of a positive test 
is high, 93%—ie, 93% of those with a positive test actually 
have the infection.

Impressed with the new test, the doctor now takes it to her 
private practice in the suburbs, which has a clientele that is 
mostly older than age 35 years (fi gure 3, right panel). Here, 
the prevalence of chlamydial infection is only 3%. Now the 
same excellent test has a predictive positive value of only 
0.50. When the results of the test are positive, what should 
the doctor tell the patient, and what, in turn, should the 
patient tell her husband? Here, fl ipping a coin has the same 
predictive positive value (and is considerably cheaper and 
simpler than searching for bits of DNA). This message is 
important, yet not widely understood: when used in low-
prevalence settings, even excellent tests have poor predictive 
positive value. The reverse is true for negative predictive val-
ues, which are nearly perfect in fi gure 3. Although failing to 
diagnose sexually transmitted diseases can have important 
health implications, incorrectly labeling people as infected 
can wreck marriages and damage lives.

Tests in combination
Should a follow-up test be done?
Clinicians rarely use tests in isolation. Few tests have high 
sensitivity and specifi city, so a common approach is to do 
tests in sequence. In the instance of syphilis, a sensitive (but 
not specifi c) reagin test is the initial screen. Those who test 
positive then get a second, more specifi c test, a diagnostic 
treponemal test. Only those who test positive on both receive 
the diagnosis. This strategy generally increases the specifi city 

compared with a single test and limits the use of the more 
expensive treponemal test.20 Testing for HIV-1 is an analogous 
two-step procedure.

Alternatively, tests can be done in tandem (parallel or 
simultaneous testing).3,21 For example, two different tests 
might both have poor sensitivity, but one might be better at 
picking up early disease, whereas the other is better at identi-
fying late disease. A positive result from either test would then 
lead to diagnostic assessment. This approach results in higher 
sensitivity than would arise with either test used alone.

Benefi t or bias?
Does a screening programme really improve health?
Even worthless screening tests seem to have benefi t.2 This 
cruel irony underlies many inappropriate screening 
programmes used today. Two common pitfalls lead to the 
conclusion that screening improves health; one is an artifact 
and the other a refl ection of biology.

Lead-time bias
Lead-time bias refers to a spurious increase in longevity 
associated with screening. For example, assume that mam-
mography screening leads to cancer detection 2 years 
earlier than would have ordinarily occurred, yet the screening 
does not prolong life. On average, women with breast cancer 
detected through screening live 2 years longer than those with 
cancers diagnosed through traditional means. This gain in 
longevity is apparent and not real: this hypothetical screening 
allows women to live 2 years longer with the knowledge that 
they have cancer, but does not prolong survival, an example 
of zero-time shift.2

Length bias
Length bias is more subtle than lead-time bias: the longevity 
association is real, but indirect. Assume that community-based 
mammography screening is done at 10-year intervals. Women 
whose breast cancers were detected through screening live 
5 years longer on average from cancer initiation to death than 
those whose cancers were detected through usual means. That 
screening is associated with longer survival implies clear ben-
efi t. However, in this hypothetical example, this benefi t indi-
cates the inherent variability in cancer growth rates and not 
a benefi t of screening. Women with indolent, slow-growing 
cancers are more likely to live long enough to be identifi ed in 
decennial screening. Conversely, those with rapidly progress-
ing tumours are less likely to survive until screening.

The only way to avoid these pervasive biases is to do rando-
mised controlled trials and then to assess age-specifi c mortality 
rates for those screened versus those not screened.10 Moreover, 
the trials must be done well. The quality of published trials of 
mammography screening has raised serious questions about the 
utility of this massive and hugely expensive enterprise.22–24

Conclusion
Screening can promote or impair health, depending on its 
application. Unlike a diagnostic test, a screening test is done 

Figure 3 Predictive values of a PCR test for Chlamydia trachomatis in 
high-prevalence and low-prevalence settings.
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in apparently healthy people, which raises unique ethical 
concerns. Sensitivity and specifi city tend to be inversely 
related, and choice of the cut-off point for abnormal should 
indicate the implications of incorrect results. Even very good 
tests have poor predictive value positive when applied to 
low-prevalence populations.

Lead-time and length bias exaggerate the apparent benefi t 
of screening programmes, underscoring the need for rigor-
ous assessment in randomised controlled trials before use of 
screening programmes.
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Introduction
Antenatal detection of non-cephalic presentation—comprising 
breech presentation and transverse or oblique lie—in 
late pregnancy is important for timely  management and 
clinical decision making. For breech presentation, women 
and their clinicians must decide whether to try external 
cephalic version to increase the likelihood of vaginal birth 
or plan a caesarean section, with optimal gestation being 
37 and 39 weeks, respectively.1 Diagnosis of non-cephalic 
presentation after the onset of labour is associated with 
increased maternal and infant morbidity and mortality.2

Fetal presentation is generally assessed by palpating the 
abdomen (clinical examination), though we do not know the 
accuracy of this in late pregnancy.3–6 We conducted a cross 
sectional analytic study to compare clinical examination with 
the reference standard of ultrasonography.

Methods
Patients, setting, and data collection
We carried out the study at an antenatal clinic in a tertiary 
obstetric hospital between September 2003 and December 
2004. Women with a singleton pregnancy at 35–37 weeks’ 
gestation were eligible. A midwife, resident, registrar, or 
obstetrician, all of whom were aware of the study, provided 
routine antenatal care. All eligible women underwent clinical 
examination to assess fetal presentation. Subsequently, those 
who consented to participate underwent ultrasonography to 
confi rm the diagnosis. The ultrasound examination was con-
ducted with a portable hand held machine following a stan-
dard protocol. The operators were blinded to the result of the 
clinical examination until after the ultrasonography.

We collected data from the antenatal record and recorded 
it von a standard data abstraction form. We assessed the accu-
racy of clinical examination in diagnosing fetal presentation 
by calculating sensitivity specifi city, and positive and negative 
predictive values.
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Abstract
Objective To examine the diagnostic accuracy of clinical examination to determine fetal presentation in late pregnancy.
Design Cross sectional analytic study with index test of clinical examination and reference standard of ultrasonography.
Setting Antenatal clinic in tertiary obstetric hospital in Sydney, Australia.
Participants 1633 women with a singleton pregnancy between 35 and 37 weeks’ gestation attending antenatal clinics.
Intervention Fetal presentation assessed by clinical examination during routine antenatal care, followed by ultrasonog-
raphy to confi rm the diagnosis.
Main outcome measures Sensitivity, specifi city, and positive and negative predictive values of clinical examination 
compared with ultrasonography. Diagnostic rates by maternal characteristics.
Results Ultrasonography identifi ed non-cephalic presentation in 130 (8%) women, comprising 103 (6.3%) with breech 
and 27 (1.7%) with transverse or oblique lie. Sensitivity of clinical examination for detecting non-cephalic presentation 
was 70% (95% confi dence interval 62% to 78%) and specifi city was 95% (94% to 96%). The positive predictive value and 
negative predictive value were 55% and 97%, respectively.
Conclusions Clinical examination is not sensitive enough for detection and timely management of non-cephalic 
presentation.
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Sample size and analysis
To determine a sensitivity of 75% (with a 95% confi dence 
interval plus or minus 10%) we required 100 women with 
a breech presentation. As 6–8% of singleton pregnancies 
are breech at 35–37 weeks’ gestation,7 we needed between 
1250 and 1700 women to gain a sample of 100 with a breech 
presentation. We investigated predictive factors associated 
with correct diagnosis of fetal presentation using contingency 
tests and used sensitivity analyses to examine specifi c accu-
racy rates by maternal characteristics. P<0.05 was considered 
signifi cant and analyses were conducted with SAS version 8.2 
(SAS Institute, Cary, NC).

Results
Of the 1707 eligible women approached, 65 women refused to 
take part because of lack of time or concern about having had 
too many ultrasound examinations during their pregnancy, 
and nine women were excluded owing to missing data. The 
average age of the 1633 participating women was 31 years 
(SD 5.4); 55% were nulliparous; 31% were overweight or 
obese; and 61% were white. Over 60 care providers partici-
pated, with 55% of examinations performed by residents or 
registrars, 28% by midwives, and 17% by obstetricians.

Ultrasonography identifi ed non-cephalic presentation in 
130 (8%) women, comprising 103 (6.3%) with breech and 27 
(1.7%) with transverse or oblique lie. The sensitivity of clini-
cal examination for identifying non-cephalic presentation 

was 70% and specifi city was 95% (table). A similar rate of 
sensitivity was found for breech presentation (70%, 61% to 
78%). The positive and negative predictive values were 55% 
and 97%, respectively

The sensitivity of clinical examination for  determining 
non-cephalic presentation was not associated with any par-
ticular maternal characteristics, but there was a trend of 
increasing sensitivity for women with a previous pregnancy 
(multiparous) and lower body mass index (table). The 
proportion of women in whom cephalic presentation was 
correctly diagnosed (specifi city) was signifi cantly greater with 
increasing gestational age and decreasing body mass index 
(P < 0.05) (table).

Discussion
In this large study in a general maternity population we found 
that clinical examination was, generally, not sensitive enough 
to accurately diagnose fetal presentation in late pregnancy. 
Although clinical examination increased the probability of 
diagnosis from 8% (prior probability or prevalence) to 55% 
(posterior probability or positive predictive value),8 only 70% 
of non-cephalic presentations were detected. If we apply our 
fi ndings to a general maternity population of 1000 women, 
clinical examination would identify 101 women as having 
a non-cephalic presentation but in only 56 would this be 
correct; and 24 women with non-cephalic presentation would 
be missed altogether.

Sensitivity and specifi city (as %) of clinical examination for detecting fetal presentation

Non-cephalic, correctly diagnosed Cephalic, correctly diagnosed

Characteristic No. of cases Sensitivity (95% CI) No. of cases Specifi city (95% CI)

Overall 91/130 70 (62 to 78) 1429/1503 95 (94 to 96)
Maternal age (years):
 <35 55/84 65 (64 to 66) 1100/1158 95 (94 to 96)
 35 34/44 77 (75 to 79) 319/336 95 (94 to 96)
Gestational age (weeks):
 34–35 32/41 78 (76 to 80) 316/343 92 (91 to 93)
 36 29/44 66 (64 to 68) 492/512 96 (95 to 97)
 37–38 28/43 65 (63 to 67) 615/641 96 (95 to 97)
Parity:
 Nulliparous 49/73 67 (65 to 68) 779/820 95 (94 to 96)
 Multiparous 42/57 74 (72 to 75) 643/677 95 (94 to 96)
Body mass index:
 Thin 9/13 69 (62 to 76) 109/115 95 (94 to 96)
 Normal weight 49/67 73 (72 to 74) 862/898 96 (95 to 97)
 Overweight 19/28 68 (65 to 71) 234/241 97 (96 to 98)
 Obese 3/8 38 (26 to 49) 139/156 89 (88 to 90)
Country of birth:
 Australia/New Zealand/Europe 52/72 72 (71 to 73) 855/900 95 (94 to 96)
 Asia 18/39 46 (67 to 72) 407/424 96 (95 to 97)
 Other 8/11 69 (37 to 54) 144/152 95 (94 to 96)

Numbers may not add up to totals because of missing data.
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Strengths and limitations of the study
We included a large unselected sample and used appropriate 
timing of the clinical examination relevant for management 
of non-cephalic presentation in late pregnancy. Previous 
reports of the sensitivity of clinical examination for detect-
ing non-cephalic presentation have ranged from 28–88%. 
These studies were small, underpowered, and included 
selected high risk pregnancies and low gestational ages (range 
20–42 weeks).3–6 Our observed prevalence of non-cephalic 
presentation was consistent with rates found in longitudinal 
studies of fetal presentation,9 suggesting that our fi ndings 
may be applied in other obstetric settings.

We did not collect information on individual clinicians and 
were unable to ascertain whether particular individuals may 
have biased results. As all examiners were aware of the study 
and assessments were recorded and verifi ed, we assumed 
that assessors would be vigilant. Nevertheless, it is possible 
that some clinicians may not have been as attentive because 
diagnoses were going to be checked with ultrasonography.

Room for improvement
Introduction of routine ultrasonography to assess fetal presen-
tation in late pregnancy would improve diagnostic accuracy. 
However, costs, resource availability, and feasibility need to be 
considered, as well as the potential deskilling of care providers 
in performing clinical examination. A cost effectiveness analysis 
would be necessary before implementation and change in clini-
cal obstetric practice. However, lower rates of accuracy found 
among overweight or obese women suggest that formal ultra-
sonography in late pregnancy for these women is required.

Clinical examination to assess fetal presentation is a relatively 
simple procedure and, with ongoing diligence and regular audit 
and feedback, accuracy may be increased. Variability in accuracy 
rates by examiner and level of experience also suggest there is 
room for improvement by all pregnancy care providers.3,5,10

What is already known on this topic
There is limited information about the accuracy of clinical exam-
ination for detection of fetal presentation in late pregnancy.

What this study adds
Compared with ultrasonography, the sensitivity of  clinical 
examination is inadequate for detection and timely 
management of non-cephalic presentation.
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Answers to guide quizzes

Unit 1: C, B, D, A
Unit 2: B, A, C, D
Unit 3: B, C, D, D
Unit 4: D, C, A, D
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Unit 7: C, B, D, D
Unit 8: A, C, B, D
Unit 9: D, B, D, A
Unit 10: C, B, B, D

Answers to exercises

Unit 1
Table 1.1 Mean and 95% CI cognitive scores at baseline in 1394 women with type 2 
diabetes

N Mean SD SE Lower 95% CI Upper 95% CI

TICS (8–41 points) 1394 33.2 2.9 0.08 33.1 33.4

TICS 10 word list 1394 2.0 1.9 0.05 1.9 2.1
East Boston memory 
 test – immediate recall

1394 9.3 1.8 0.05 9.2 9.4

East Boston memory 
 test – delayed recall

1394 8.9 2.1 0.06 8.8 9.0

What factors infl uence the 95% confi dence intervals and in what way? •

Confi dence intervals are infl uenced by the precision with which the summary 
statistic has been measured as estimated by the standard error, and the size of the 
standard error is directly infl uenced by sample size. Thus, as the sample size 
increases, the confi dence intervals become smaller for the same mean value and 
standard deviation. Similarly, the confi dence intervals become larger as the sample 
size decreases.

162
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Table 1.2 Mean and 95% CI cognitive scores at baseline in 50 women with type 2 
diabetes

N Mean SD SE Lower 95% CI Upper 95% CI

TICS (8–41 points) 50 33.2 2.9 0.41 32.4 34.0

TICS 10 word list 50 2.0 1.9 0.27 1.5 2.5
East Boston memory 
 test – immediate recall

50 9.3 1.8 0.25 8.8 9.8

East Boston memory 
 test – delayed recall

50 8.9 2.1 0.30 8.3 9.5

Why are the confi dence intervals so narrow? •

In Table 1.1 the confi dence intervals are narrow because the sample size at 1394 
participants is large.

If the four prevalence rates had been collected at yearly intervals over a 4 year  •

period, what inferences could be made about signifi cant differences between them 
by comparing the confi dence intervals?

The decrease in prevalence rate from year 1 (rate 1) to year 2 (rate 2) is signifi cantly 
different because there is no overlap between the range of the two 95% confi dence 
intervals. The increase from year 2 (rate 2) to year 3 (rate 3) would represent a signifi -
cant increase over the 12 month period since the 95% confi dence intervals for the rates 
do not overlap with each other. The change in prevalence between year 3 (rate 3) and 
year 4 (rate 4) would not be statistically signifi cant because there is substantial overlap 
of the 95% confi dence intervals.

Table 2.4 Prevalence rates and 95% CI

Number positive Total number P Prevalence (95% CI)

Prevalence rate 1 187 428 0.44 43.7 (38.9 to 48.5)
Prevalence rate 2 90 428 0.21 21.0 (17.2 to 24.9)
Prevalence rate 3 150 428 0.35 35.0 (30.5 to 39.6)
Prevalence rate 4 165 428 0.39 38.6 (33.9 to 43.2)

What happens to the 95% confi dence intervals when the sample size is smaller? •

The means and standard deviations in this table are the same as those in Table 1.1, 
however, because the sample size is smaller (only a subset of 50 participants 
are included in this analysis), the standard errors around the estimates and the 95% 
confi dence intervals are consequently larger.

Why does this happen? •

The precision of an estimate based on a small sample is less than the precision of an 
estimate based on a large sample. Consequently, the range or width of the confi dence 
interval increases as the sample size decreases because we are less certain of the approx-
imation of the sample mean to the true population mean.

Unit 2
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Grade of tetanus on day 6 by treatment group with 25 patients 
enrolled in each group

Grade III or 
IV tetanus

Grade I or 
II tetanus

Total

Treatment 
 (study) group

4 (15%) 21 (85%) 25

Control group 14 (56%) 11 (44%) 25
Total 25 25 50

Observed (O)
Row 
total

Column 
total

Total 
sample size Expected (E) OE (OE)2/E

4 25 18 50 9.00 −5.00 2.78

21 25 32 50 16.00 5.00 1.56

14 25 18 50 9.00 5.00 2.78

11 25 32 50 16.00 −5.00 1.56

SUM 8.68

Unit 3

Contingency table for tetanus grade I–II and tetanus grade III–IV on day 6

Observed (O)
Row 
total

Column 
total

Total 
sample size Expected (E) OE (OE)2/E

7 46 36 98 16.90 −9.90 5.80

39 46 62 98 29.10 9.90 3.37

29 52 36 98 19.10 9.90 5.13

23 52 62 98 32.90 −9.90 2.98

SUM 17.27

Grade of tetanus on day 6 by treatment group

Grade III or 
IV tetanus

Grade I or 
II tetanus Total

Treatment 
 (study) group

7 (15%) 39 (85%) 46

Control group 29 (56%) 23 (44%) 52
Total 36 62 98

Is the Pearson’s chi-square value statistically signifi cant and consistent with the  •

difference in severity rates between treatment groups?

Yes – a Pearson’s chi square value of over 3.84 is statistically signifi cant for a 
2×2 table and the value of 17.27 shows a highly signifi cant difference between 
groups of P<0.0001. This occurs because the rate of grade III or IV tetanus is 15% in 
the treatment group compared to 56% in the control group – a large between-group 
difference of 41%.
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Association between redness at 1 day and size of needle

Redness 
present

Redness 
absent Total

Long thin (23G, 25 mm) 
 needle 

15 38 53

Short, wide (25G, 16 mm) 
 needle

36 21 57

Total 51 59 110

Association between redness at 2 days and size of needle

Redness 
present

Redness 
absent Total

Long thin (23G, 25 mm) 
 needle 

5 48 53

Short, wide (25G, 16 mm) 
 needle

22 35 57

Total 51 59 110

Association between redness at 3 days and size of needle

Redness 
present 

Redness 
absent Total

Long thin (23G, 25 mm) 
 needle 

2 51 53

Short, wide (25G, 16 mm) 
 needle

16 41 57

Total 18 92 110

If the number of patients enrolled was 25 in each group with approximately the  •

same percentages and rates as day 6, would the difference in severity rates between 
groups on day 6 still be statistically signifi cant? Would this result lead you to 
change the conclusion drawn by the authors?

If 25 patients had been enrolled in each group and the between-group difference 
remained at 41%, the Pearson’s chi square value would be lower at 8.68 with a P value 
of 0.003. This still indicates a statistically signifi cant difference in severity rates between 
the groups, but the difference is not as highly signifi cant as when the number of 
participants was 98. It would be concluded that patients in the study group who were 
treated with anti-tetanus immunoglobulin by intrathecal and intramuscular routes 
had a signifi cantly lower rate of grade III or IV tetanus than patients in the control 
group who were treated by the intramuscular route. This conclusion is consistent with 
the authors’ conclusion, that is, that patients treated with anti-tetanus immunoglobu-
lin by the intrathecal route show better clinical progression than patients treated by the 
intramuscular route.

Unit 4
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For risk, what can you infer from the estimates of relative risk and odds ratios 1 
over time?

The estimates of relative risk and odds ratios follow approximately the same 
pattern, in that the values of protection and risk increase over time. The estimates 
suggest that long thin needles not only decrease the short-term risk of redness at 
6 hours but have an increasingly protective effect on longer term risk of redness of up 
to 3 days in infants undergoing routine vaccination. The relative risk of 7.44 suggests 
that infants are 7 times more likely to have redness at 3 days if a short, wide needle 
is used.

Does the difference between the estimates of relative risk and odds ratios vary with 2 
the frequency of the outcome?

The frequency of redness (outcome) in the long thin needle and short wide 
needle groups respectively is as follows: day 1, 28% vs 63%; day 2, 9% vs 39% and day 
3, 4% vs 28%. Odds ratios are unreliable in studies such as this when events are com-
mon (say >20%) or when an event rate is high in one group. Thus, at day 1 when the 
outcome is common in both groups and the control group has an event rate of 63%, 
the odds ratio for risk is almost double the relative risk. However, at days 2 and 3 when 
the event rates become lower, the difference between the relative risk and odds ratio 
becomes smaller in relative terms. It is clear from the columns for risk that the odds 
ratio always over-estimates the relative risk.

Why do you think this happens?3 

The calculations of the odds ratio and relative risk are different. The odds ratio is 
the odds of an outcome occurring in one group, divided by the odds of the 
outcome occurring in another group. The relative risk is the ratio of the probability 
of an outcome in one group divided by the probability of the outcome in another 
group. Therefore, the difference between odds ratios and relative risk values 
depends upon the odds or probability of the outcome in both groups. Only 
when the outcome occurs infrequently (<10%) will the odds ratio approximate the 
relative risk.

Unit 5

Complications No complications Total

Study group 33 25 58
Control group 46 16 62
Total 79 41 120

Table 4.3 Relative risk and odds ratios for redness over 
three days

 Protection Risk

Relative risk Odds ratio Relative risk Odds ratio

6 hours 0.66 0.44 1.51 2.25

1 day 0.45 0.23 2.23 4.34

2 days 0.24 0.17 4.09 6.03
3 days 0.13 0.10 7.44 9.95

Peat_Answers.indd   166Peat_Answers.indd   166 6/13/2008   5:03:42 PM6/13/2008   5:03:42 PM



  Answers   167

How do the NNT values compare and which NNT value would be the most  •

important for deciding which treatment to use?

The NNT values are similar at approximately 6 for complications and respiratory con-
ditions, with a higher NNT value of approximately 11 for death. The most important 
NNT value to use to decide which treatment is superior would be death, as the patient’s 
life is the primary concern, although more patients would need to receive the treat-
ment to prevent one death than to prevent one complication or respiratory condition. 
Comparison of the CER and EER rates for death indicates that the occurrence of death 
is 9% lower in patients treated for tetanus by intrathecal and intramuscular route and 
this is refl ected in the ARR of 0.09.

In the study, there were 10 deaths in the control group and 4 deaths in the  •

new treatment group. If the reverse had happened, that is, there was 10 deaths 
in the new treatment group compared to 4 in the control group, what would 
the NNT be?

Respiratory failure 
or mechanical failure

No respiratory failure 
or mechanical failure

Total

Study 
group

22 36 58

Control 
group

34 28 62

Total 56 64 120

Respiratory 
infection

No respiratory 
infection Total

Study group 29 29 58
Control group 42 20 62
Total 71 49 120

Died Did not die Total

Study group 4 54 58
Control group 10 52 62
Total 14 106 120

Table 5.3 ARR and NNT for complications and mortality 
for tetanus by intrathecal and intramuscular route or the 
intramuscular route

Outcome CER EER ARR NNT

Complications 0.74 0.57 0.17 5.8
Respiratory infection 0.68 0.50 0.18 5.6
Respiratory failure or 
 mechanical ventilation 0.55 0.38 0.17 5.9
Death 0.16 0.07 0.09 10.8
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With 10 deaths in the new treatment group and 4 deaths in the control group the NNT 
would be −9.27, which is rounded to a whole number, −9. A negative NNT value is 
equivalent to the number needed to harm (NNH),that is, the number of people who 
need to be exposed to the risk factor to cause harm to one additional person. A nega-
tive NNT indicates that the new study treatment is harmful in that it is less effective 
than the control group treatment, in this case, anti-tetanus immunoglobulin by the 
intramuscular route. This value indicates that by treating 9 patients by the intrathecal 
and intramuscular route, 1 additional patient will die.

What type of analyses does the paper report (intention-to-treat, available-case analysis  •

or treatment-received)? How does this infl uence how you would interpret the results?

The authors state that participants who did not complete the therapeutic procedure 
were analysed according to the group to which they were allocated. For two patients 
who were assigned to treatment via the intrathecal route, it was not possible for them 
to be punctured. Therefore, they received treatment by the intramuscular route only 
but were included in the analysis for the intrathecal group. There is no mention of how 
any missing outcomes were dealt with. However, since patients were analysed accord-
ing to the group to which they were allocated regardless of whether they completed 
the treatment or received only part of the treatment assigned, this suggests that an 
intention-to-treat analysis was conducted. This type of analysis provides a conserva-
tive, unbiased estimate of the treatment effect.

Unit 6
Table 6.2 Other back pain-related NHS contacts for surgery and rehabilitation

Surgery (N = 176) Rehabilitation (N = 173)

Mean cost (SD) 95% range Mean cost (SD) 95% range P value

Surgery outpatient clinics 190 (159) −128, 508 82 (119) −156, 320 0.001
Physiotherapy outpatient clinics 286 (523) −760, 1332 301 (584) −867, 1469 NS
Unplanned hospital admissions 451 (1881) −3311, 4213 2128 (3522) −4916, 9172 0.001
Other back pain-related hospital 
 admissions

130 (910) −1690, 1950 73 (555) −1037, 1183 NS

Total other back pain-related 
 NHS contact costs

1707 (2451) −3195, 6609 3009 (4001) −4993, 11011 0.001

Died Did not die Total

Study group 10 48 58
Control group 4 58 62
Total 14 106 120

Do you think that the SD describes the distribution of the data accurately? •

The authors say that cost data is modestly skewed but do not indicate the degree of 
skewedness. The standard deviations are large indicating a large amount of variation. 
In fact, the standard deviation is larger than the mean value for all variables (except 
for surgery outpatient clinics costs for patients who had surgery) and when the 95% 
ranges are computed they show that the ranges of the data include some large nega-
tive (implausible) values. This suggests that the data are quite skewed and, clearly, 
the standard deviation does not describe the spread of the data accurately. Thus, the 
standard deviation will not be an accurate measure of variability to use when 
computing summary statistics or comparing differences between the groups.
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The authors say that skew in the cost data was modest and therefore that parametric  •

confi dence intervals were used. However, they do not say how the P values in 
Table 3 were derived. Do you think that the distributions of cost in each group were 
approximately normal so that a t-test could be used to generate valid P values?

T-tests are robust to a mild degree of skewness, especially when group sizes are equal. 
However, computing the 95% range estimates in Table 6.2 suggest that the data are 
quite skewed and that the standard deviations do not describe the characteristics of 
the data accurately. In this case, it would be appropriate to use medians and inter-
quartile ranges to describe the centre of the data and the range of data values and 
non-parametric statistics to avoid any bias in P values when comparing the groups.

Are the  • P values reported consistent with the 95% confi dence intervals around the 
mean cost differences in Table 3 in the set article?

A statistically signifi cant mean difference will have a confi dence interval that does not 
contain zero. As can be seen from Table 3 the 95% confi dence intervals of the sig-
nifi cant mean differences do not contain the value zero and so are consistent with the 
reported P values. Similarly, the 95% confi dence intervals of the non-signifi cant mean 
values do overlap the zero value.

Refer to Figure 1. By comparing the confi dence intervals what would you conclude 
about:

the between-group differences; •

At each time interval, there is considerable overlap of the confi dence intervals of the 
surgical group and rehabilitation group; therefore, there would not be a statistically 
signifi cant difference between the groups.

the change in mean utility levels over the period of the study. •

Overall, the mean utility levels increase over time, with a minimal change in mean 
utility between 6 months and 12 months. Comparison of the overlap of the 95% 
confi dence intervals indicates that mean utility levels for the surgery group at 6, 12 
and 24 months are signifi cantly higher than at baseline, with no signifi cant differ-
ence between mean values at 6, 12 and 24 months. For the rehabilitation group, the 
mean utility value at baseline only slightly overlaps with the confi dence intervals 
at 6 and 12 months. Therefore, the mean difference from baseline to 6 months and 
12 months may be marginally signifi cant but the lack of overlap of 95% confi dence 
intervals between baseline and 24 months shows that the mean utility level at 
24 months is signifi cantly higher than at baseline.

Unit 7
Worked Example

Table 7.1 Predicted FVC and per cent predicted FVC

Height (m) Age (years) Gender Measured FVC (L) Predicted FVC (L) Per cent predicted FVC (%)

1.50 20 Female 3.8 3.19 119.0
1.74 20 Female 3.8 4.37 87.0
1.50 60 Female 3.8 1.99 190.7
1.74 60 Female 3.8 3.17 120.0
1.58 20 Male 3.8 4.14 91.9
1.82 20 Male 3.8 5.43 70.0
1.58 60 Male 3.8 2.94 129.5
1.82 60 Male 3.8 4.23 89.9
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How would you interpret the coeffi cient for the binary variable ‘gender’? •

The positive sign for the coeffi cient for gender indicates that FVC increases as the coding 
for gender increases. The coding for gender is female = 0 and male = 1 so the coeffi cient 
of 0.59 indicates that on average males have a FVC that is 0.59 L higher than females.

Are your calculations of predicted FVC in accordance with the signs and sizes of  •

the regression coeffi cients?

The regression equation indicates that that FVC will be larger for people who are taller, 
younger or male. The calculation of predicted values for people with given characteristics 
is shown in Table 7.1. As expected, the highest predicted FVC value is for a tall, young male. 
In contrast, the lowest predicted FVC value is for a short, older female. The coeffi cient for 
height is 0.62 and positive, indicating that FVC increases by 0.62 L for each metre increase 
in height cubed. For the fi rst two people shown in Table 7.1, they are both female and 
are the same age, with one female 0.24 m taller. Using the regression equation, the differ-
ence for predicted FVC for these two females is 1.18. The contribution of height to FVC 
for the female who is 1.50 m is 2.10 L (i.e. 0.62 × 1.503) and 3.27 L for the female who is 
1.74 m tall, a difference of 1.18 L. Height cubed of these two females is 3.8 m and 5.27 m 
respectively – a difference of 1.89 m. This difference multiplied by the coeffi cient of height, 
0.62, equals 1.17 L which approximately equals the predicted FVC difference of 1.18 L. 
Similarly, as the age of the individual increases by one year, the predicted FVC values decrease 
by 0.03 L and males have a FVC that is 0.59 L higher than females. Therefore, the predicted 
FVC values are in accordance with the signs and sizes of the regression coeffi cients.

What do the estimates of per cent predicted FVC indicate? •

Per cent predicted values tell us how close a person is to their predicted value, that is, 
the mean value in the population of people with the same characteristics. Per cent pre-
dicted values close to 100% indicate the person’s measured or actual value is very close to 
his/her predicted value. Per cent predicted values above 100% indicate that a person’s 
actual value is higher than his/her predicted value. Conversely, per cent predicted values 
lower than 100% indicate that a person’s measured value is lower than his/her predicted 
value. When measuring lung function, low per cent predicted values, for example values 
less than 80%, are often used in clinical settings to indicate that a person has compromised 
lung function, for example as a result of a respiratory condition or a history of smoking.

What clinical importance would you attach to these estimates of per cent  •

predicted FVC?

Figure 7.6 Regression lines for predicted FVC values for males 
and females.
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If a model is accurate in that it is based on a large random sample of the population, 
it can be used in a clinical setting to predict FVC values and develop normal reference 
values. From the per cent predicted values calculated in Table 7.1, we can conclude that 
the one person with a predicted FVC of less than 80% has a much lower lung function 
than other people in the population with the same characteristics and that this may be 
an indicator of lung disease. However, the other people have a FVC which is close to or 
higher than their predicted value.

Exercise

What populations can these results be generalised to? •

The results can be generalised only to an infant sample with similar characteristics 
to the current sample, that is, preterm infants born between 25 and 35 weeks 
gestation.

Can the  • r values be compared across the four fi gures to assess which measure of 
nutrient intake is the ‘best’ predictor of faecal E1?

The range of values on either axis infl uences the size of the correlation coeffi cient. 
The correlation coeffi cient becomes larger and therefore more signifi cant as the 
range of a variable increases. In the four fi gures, the range of values is the same on 
each x-axis but each fi gure has a different range for the y-axis. Therefore, the 
r values cannot be compared across the four fi gures to determine the best predictor 
of faecal E1.

Are the measurements displayed correctly on the  • x- and y-axis, that is, are the 
outcome and explanatory variables correctly classifi ed?

The outcome variable is generally plotted on the y-axis and the explanatory 
variable on the x-axis. In the graphs of Figure 2, the outcome variable is the amount 
of faecal pancreatic enzyme elastase 1 which is plotted on the x-axis and the explana-
tory variables are plotted along the y–axis, which is counter-intuitive. Regression lines 
are used in prediction and it seems unlikely that clinicians would want to predict infor-
mation such as total energy intake from faecal EI.

Are the lines of best fi t that are shown on the fi gures valid assessments of the  •

relationships given the presentation of the explanatory and outcome variable on 
the x-axis and y-axis?

The equation for the lines of best fi t would be exactly the same as shown in the fi g-
ures if the outcome variable was plotted on the y-axis and the explanatory variable 
was plotted on the x-axis. However, the regression equations for the fi gures as shown 
would provide an estimate of error around the predictor, for example total energy 
intake, rather than around the outcome, that is faecal EI.

Do you think that each line meets the assumptions for using regression? •

Simple linear regressions are shown and most of the assumptions appear to have been 
met although it is hard to decide if the relationships are linear, if the residuals are 
normally distributed or if the variance is constant over the models. The authors would 
have needed to have ascertained that these assumptions were met during data analyses 
and to have reported this in the paper. However there is one outlier that appears to be 
infl uential and it seems that the lines of best fi t would be different if the outlier was 
removed or recoded to have less infl uence.
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Unit 8
Table 8.5 Mean outcome values at follow-up, effect size and mean difference

Outcome

Surgery group 
Mean (SD) 
(n = 176)

Rehabilitation group 
Mean (SD) 
(n = 173) Effect size (SDs)

Mean difference 
(95% CI) t- value P value

(n = 138) (n =146)
Disability index 34.0 (21.1) 36.1 (20.6) −0.10 −2.1 (−7.0, 2.8) 0.85 0.40

(n = 118) (n =126)
Shuttle walk 352 (244) 310 (202) 0.19 42 (−14.1, 98.1) 1.47 0.14

(n = 115) (n =131)
SF-36 physical 28.8 (14.9) 27.6 (14.6) 0.08 1.2 (−2.5, 4.9) 0.64 0.52
SF-36 mental 47.4 (12.2) 48.1 (12.6) −0.06 −0.7 (−3.8, 2.4) 0.44 0.66

What does a negative effect size mean? •

A negative effect size means that the treatment resulted in a lower mean outcome 
in the treatment group compared to the control group. If the outcome is scored 
so that a higher value means better health, a negative mean difference would indicate 
an effect that was opposite to the predicted direction. In Table 8.5, the negative effect 
size of −0.10 SDs for the disability index indicates that the rehabilitation treatment 
programme had a smaller effect on lower back pain (as measured by the disability 
index) when compared to surgery.

Do the  • P values refl ect the effect size between the groups?

An effect size of 0.2 is considered to be a small treatment effect. Therefore, because all 
of the effect sizes in Table 8.5 are below 0.2 this suggests that there is little difference 
between the means of the two treatment groups. This is refl ected by the P values which 
are all greater than 0.05 and indicate a non-signifi cant difference between groups.

Do any of the  • P values suggest that a type II error has occurred?

The effect sizes are small. If the effect sizes were large and the P  values were non-
signifi cant, we may judge that a type II error had occurred. In this study, the sam-
ple sizes are quite large and the differences have not reached statistical signifi cance 
because they are small. Therefore, we could conclude that a type II error is unlikely to 
have occurred.

How do the  • P values that you have computed compare with the P values in Table 4 
of Fairbank et al. (2005)? Can you explain why they are higher or lower?

The P values in Table 8.5 are different – two values are higher and two are lower than 
the P values reported in Table 4 of the article. The P values computed in the article 
were derived from an ANCOVA, which adjusted for baseline differences. The P values 
in Table 8.5 were derived from an independent t-test that does not account for dif-
ferences at baseline. Whenever different analyses are conducted on the same data, a 
discrepancy between P values can be expected because the questions being asked are 
slightly different.

Do you agree with the authors’ interpretation of their data? •

The calculated results support the author’s conclusion that there is no difference 
between the treatment groups at the 24-month follow-up.
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Unit 9
Table 9.1 Survival at 30 days for neonates, infants and children undergoing bypass surgery

Group
No. of 
procedures

% survival at 
30 days 95% CI

No. of 
events Hazard ratio

Neonate 383 87.1 83.7, 90.5 49 5.2
Infant 909 94.4 92.9, 95.9 46 2.0
Child 1353 97.5 96.7, 98.3 34 —

Neonate 30 87.1 75.1, 99.1 4 5.2
Infant 75 94.4 89.2, 99.6 4 2.0
Child 110 97.5 94.6, 100.4 3 —

Table 9.2 Survival at 1 year for neonates, infants and children undergoing bypass surgery

Group
No. of 
procedures

% survival at 
1 year 95% CI

No. of 
events Hazard ratio

Neonate 383 82.8 79.0, 86.6 66 4.3
Infant 909 90.0 88.0, 92.0 91 2.5
Child 1353 96.0 95.0, 97.0 54 —

Neonate 30 82.8 69.3, 96.3 5 4.3
Infant 75 90.0 83.2, 96.8 8 2.5
Child 110 96.0 92.3, 99.7 4 —

How do your calculated 95% confi dence intervals compare with the 99%  •

confi dence intervals reported?

The 99% confi dence intervals reported in the article cover a slightly smaller range 
than the 95% confi dence intervals calculated. For example, the 95% confi dence inter-
val around the survival rate of 87.1% for neonates at 30 days is 83.7 to 90.5, while the 
reported 99% confi dence interval is 84.3 to 88.4. This is not intuitive because the 99% 
CIs should indicate a wider range than the 95% CIs because it is a range in which 
we are less certain that the true population value lies. However, the 99% confi dence 
intervals reported in the article are calculated using the Wilson score method and 
are asymmetric while the 95% confi dence interval calculated in Tables 9.1 and 9.2 are 
symmetric. It is diffi cult to make valid comparisons of statistics when they are com-
puted using different methods.

Figure 9.2 Per cent bypass surgery at 1 year with 99% and 
95% confi dence intervals.
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What happens when the sample size is smaller? •

As the sample size gets smaller the confi dence intervals become wider for the same 
summary statistics. This occurs because we have less confi dence in the accuracy of the 
result from a small sample compared to a large sample.

Would you revise the conclusion about a between-age-group difference if the data  •

from only one centre had been reported?

If data was only collected from one centre the conclusion would be that there is no signifi -
cant difference between the groups for survival rates. Comparison of the 95% confi dence 
intervals from a single centre indicates that the intervals of three groups overlap, indicat-
ing that there are substantial similarities between the groups in terms of survival.

Could the interpretation of age group differences from the 13 centres or from only  •

1 centre be regarded as type I or type II error?

The likelihood of a type II error is usually related to the sample size. With data from only 
one centre, which indicates that there is no signifi cant difference between groups, it is very 
likely that a type II error might have occurred as a result of insuffi cient power because of 
small sample size to show that between-group differences are statistically signifi cant. By 
combining the data from all 13 centres, the sample size is much larger and the chance of a 
type II error occurring is reduced. However, as noted by the authors, a total of 178 between-
group comparisons were conducted in this report and it is likely that a spuriously signifi -
cant result was generated simply by chance, that is, a type I error may have occurred.

The authors report that “For infants, mortality after treatment for heart disease at  •

1 year was double that at 30 days”. From the data presented in the article, how do 
they reach this conclusion?

At 30 days the mortality rate in infants is 100−94.4 or 5.6% and the mortality rate at 1 
year is 100−90 or 10%. Thus, the mortality rate at 1 year is approximately double the 
mortality rate at 30 days.

How would you interpret the hazard ratios? •

In Table 9.1, the hazard ratio of 5.2 indicates that neonates who had surgery at 30 days 
had approximately fi ve times the chance of surviving at the next time point compared 
to older children who had similar surgery. Similarly, the hazard ratio of 2.0 indicates 
that infants who had surgery at 30 days had approximately twice the chance of surviv-
ing at the next time point compared to older children who had similar surgery.

Unit 10
Diagnostic table for detecting fetal presentation for thin 
participants classifi ed

Non-cephalic Cephalic Total

Examination positive 9 6 15
Examination negative 4 109 113
Total 13 115 128

Diagnostic table for detecting fetal presentation for normal 
weight participants

Non-cephalic Cephalic Total

Examination positive 49 26 85
Examination negative 18 862 880
Total 67 898 965
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Diagnostic table for detecting fetal presentation for obese 
participants

Non-cephalic Cephalic Total

Examination positive 3 17 20
Examination negative 5 139 144
Total 8 156 164

Table 10.4 PPV, NPV and likelihood ratio for detecting fetal presentation

Sensitivity Specifi city PPV NPV Likelihood ratio

Overall 0.70 0.95 0.55 0.97 14.0
Body mass index
 Thin 0.69 0.95 60.0 96.5 13.3
 Normal weight 0.73 0.96 57.6 98.0 18.2
 Overweight 0.68 0.97 73.1 96.3 23.4
 Obese 0.38 0.89 15.0 96.5 3.4

Diagnostic table for detecting fetal presentation for overweight 
participants

Non-cephalic Cephalic Total

Examination positive 19 7 26
Examination negative 9 234 243
Total 28 241 269

Are the statistics PPV and NPV appropriate to describe diagnostic utility in the  •

sample studied?

The proportion of the sample with and without the disease infl uences the statistics 
PPV and NPV. In this sample, there is a large discrepancy between the number of cases 
presenting with the disease (n = 1503) compared to the number who do not have the 
disease (n = 130). Thus, PPV is more likely to be higher in the cephalic group than the 
non-cephalic group. Therefore, PPV and NPV may not be the appropriate statistics to 
describe diagnostic utility in this sample.

What populations would these statistics generalise to? •

The statistics PPV and NPV can only be generalised to population samples when they 
are based on a random population sample. The sample in this paper is recruited from 
one hospital setting and therefore is likely to be biased in terms of demographic fac-
tors such as socioeconomic status etc. The results should only be generalised to other 
women who attend similar settings.

Does calculation of the likelihood ratio infl uence how you would interpret the  •

results of the study?

The likelihood ratios show that the test is most predictive in the group of overweight 
women. This is the group in whom specifi city is also higher than in the other groups.

Do you agree with the authors’ conclusion that an ultrasound is only required to  •

determine fetal position in late pregnancy in overweight and obese women?

The results seem to suggest that the use of ultrasound would be warranted in 
overweight women in whom there is a high specifi city, high PPV and high likelihood 
ratio. The value of using the test in obese women compared to thin or normal weight 
women is not so clear.
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95% confi dence interval
Range in which we can be approximately 95% certain that 
the true population value lies.

Absolute risk reduction (ARR)
The reduction in risk (probability of the outcome) that is 
conferred by the new treatment.

Available case analysis
Only participants with fi nal study outcomes are included in 
the data analysis but participants are maintained in the group 
to which they were allocated. The results may be infl uenced 
by bias and confounders.

Censored observations
Used to describe participants who withdraw from the study 
or who do not experience the outcome of interest.

Chi-square test
A statistic used to test whether the rate of an outcome is 
signifi cantly different between two or more exposure groups. 
The test provides a probability that the outcome and the 
exposure are independent.

Chi-square test for trend
A statistic used to test whether there is a linear trend for an 
outcome to increase or decrease over the range of an ordered 
categorical exposure variable.

Control event rate (CER)
The frequency of the outcome in the control (current best 
practice treatment or placebo) group.

Cross-over trial
A study in which participants receive two or more treatments 
given consecutively, usually in a random order. The response 
to the fi rst treatment can be contrasted with the response to 
the second treatment in the same participants.

Diagnostic test
Test used to confi rm disease in people who present with signs 
or symptoms.

Effect size
The distance between two mean values, described in units 
of their standard deviations, that describes the relative 
magnitude of the difference between two groups.

Event
Outcome of interest, which is typically death but can be 
a non-fatal or favourable outcome, e.g. discharge from 
hospital.

Experimental event rate (EER)
The frequency of the outcome in the experimental (new 
treatment) group.

Experimental study
A study which is conducted to test the effect of a treatment 
or intervention.

Explanatory variable
A characteristic that is hypothesised to infl uence the outcome 
variable. In clinical studies the explanatory variable is often 
the group to which patients have been randomised. In cross-
sectional and cohort studies, explanatory variables are often 
exposure variables.

Gold standard
Test regarded as the most accurate method available for 
classifying people as disease-positive or -negative.

Hazard ratio
The risk of the event in a study group divided by the risk of 
the event in a reference group.

Incidence
The number of new cases of a condition that develop in a 
population during a defi ned time period.

Independent samples t-test
Test to measure whether a continuous outcome variable 
with a normal distribution is signifi cantly different between 
two groups, e.g. between male and female or between an 
intervention and a control group.
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Intention-to-treat analysis
All participants are analysed in the group to which they 
were allocated regardless of subsequent events such as non-
compliance or withdrawal from the study. This provides 
a conservative estimate of treatment effect that is not 
infl uenced by confounders.

Kaplan–Meier statistic
Statistic used to compare the event rate over time between 
two or more study groups. Also called a log-rank test.

Likelihood ratio
Probability of a positive test in a person with the disease 
compared to the probability of a positive test in a person 
without disease.

Line of best fi t
Regression line through a set of data points calculated to 
minimise the sums of the squared residuals.

Negative predictive value
Proportion of test-negative people who do not have the 
disease.

Normal values
Range of values in which the majority of people in a 
population are expected to lie.

Null hypothesis
A hypothesis stating that there is no difference between the 
study groups.

Number-needed-to-treat (NNT)
The number of people who need to receive a new treatment 
to prevent one adverse event occurring.

Observational study
A study which is conducted to measure rates of disease in 
a population or to measure associations between exposures 
(risk factors) and disease.

Odds
The probability of an event (p) occurring divided by the 
probability of that event not occurring (1−p).

Odds ratio
Ratio of the odds of the outcome occurring in one group 
divided by the odds of the outcome occurring in another 
group.

Outcome variable
The outcome measurement in a study, that is, the variable of 
interest such as the primary illness or disease status indicator.

Outlier
Data points at the extremities of the range or separated 
from the normal range of the data values. Data points more 
than three standard deviations from the mean are usually 
considered to be outliers.

P value
Probability that a difference between study groups would 
have occurred if the null hypothesis was true.

Paired t-test
A parametric test that measures whether the means of 
two related continuous measurements are different from 
one another, typically measurements taken from the same 
participants on two occasions.

Parametric statistics
Statistics used when the outcome measurement has a 
distribution that is approximately normal.

Phase I trial
Initial trial of a new treatment to assess safety and feasibility 
in a small group of volunteers who do not have the disease or 
patients with symptoms.

Phase II trial
A clinical trial to measure effi cacy, that is, the effect of 
a treatment under ideal conditions, in patients with the 
disease.

Phase III trial
Large randomised controlled trial or multi-centre study to 
measure effectiveness in the community, that is, the effect of 
a treatment in general clinical practice.

Phase IV surveillance
Post-marketing survey to measure rare adverse events.

Positive predictive value
Proportion of test-positive people who have the disease.

Prevalence
The total number of people in a population with a condition 
at a given point in time.

r value
Pearson’s correlation coeffi cient that measures the strength 
of a linear relationship between two continuous normally 
distributed variables.

r2

The coeffi cient of determination is equal to the squared 
correlation coeffi cient and provides an estimate of the per 
cent of variation in one variable that is explained by the 
other variable.

Random selection
Sample taken from a population in which all people have an 
equal chance of being selected.

Randomised controlled trial
A study which is conducted to measure whether a new 
treatment is superior or equivalent to no treatment or an 
existing treatment and in which participants are randomly 
allocated to the study groups.
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Relative risk
Ratio of the probability of the outcome occurring in the 
exposed group divided by the probability of the outcome 
occurring in the non-exposed group.

Residuals
Distance between an observed value and its predicted value, 
in this case the value predicted by the regression line.

Risk
The probability of an event or outcome occurring, such as 
the risk of an infection, death or cure.

Screening test
Test used for early identifi cation of disease in a population 
without symptoms.

Sensitivity
Proportion of disease-positive people who are test-positive.

Specifi city
Proportion of disease-negative people who are test-negative.

Standard deviation (SD)
A measure of variability that describes how far the data 
spreads on either side of the central mean value. The standard 
deviation is the square root of the variance and therefore is in 
the same units as the data values.

Standard error (SE)
A measure of the precision with which the mean value has 
been measured.

Treatment received analysis
Participants are re-grouped according to the treatment they 
actually received irrespective of the treatment to which they 
were allocated. Using this method, there is no control of 
confounders.

t value
A t value, which is calculated by dividing a mean value by its 
standard error, gives a number from which the probability 
of the event occurring is estimated from a t-distribution. 
A t-distribution is closely related to a normal distribution 
but depends on the number of cases in the sample.

Type I error
A difference between groups is statistically signifi cant 
although a clinically important difference does not exist. In 
this case, the null hypothesis is incorrectly rejected. That is, a 
difference between groups is statistically signifi cant although 
a clinically important difference does not exist.

Type II error
A difference between groups is not statistically signifi cant 
although a clinically important difference exists. In this case, 
the null hypothesis is incorrectly accepted.

Unpaired z-test
Test used to compare the mean values of two independent 
samples using a normal distribution. This test is only used 
when the sample size is very large or the mean and standard 
deviation of the population are known.

Variance
A squared term that describes the total variation in the sample.
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2 × 2 contingency tables 31, 32, 34, 43
95% confi dence intervals

defi nition 3, 70, 176
incidence/prevalence rates 19, 20, 21 

incidence/prevalence rates
relative risk/odds ratio 45–6
survival analyses 138, 139

A quick overview on measuring pressure ulcer 
prevalence and incidence. (Langemo D 
et al.) 21, 25–26.

absolute risk reduction (ARR) 60, 61, 176
accuracy, diagnostic 147, 151–2, 156, 159–61
acupuncture 118–19
adjusted odds ratios 45
adjusting for baseline differences 113–14, 116, 

118
adverse events 58
allergies 22–4, 27–8
alternative hypotheses 1, 77–8
Altman, DG et al., Odds ratios should be 

avoided when events are common 46, 49
Altman, DG, Randomisation: Essential for 

reducing bias 61, 64–5
An introduction to hypothesis testing. 

Parametric comparison of two groups—2 
(Driscoll, P et al.) 77–84

Analysing controlled trials with baseline and 
follow-up measurements (Vickers, AJ 
et al.) 115, 118–19

analysis of covariance (ANCOVA) 113, 118, 122
answers to questions 162–75
antitetanus treatments 34–41, 61–2
ARR see absolute risk reduction
as-treated analyses see treatment-received 

analyses
assumptions 71, 82–3, 97, 103, 131–2
asthma 22–4, 27–8
available-case analyses 59, 60, 176

babies
faecal pancreatic elastase 1 99–100, 107–9
length/weight correlation 95, 96, 98
respiratory infection and environmental 

tobacco smoke 32
back pain 74–5, 85–92, 115–16, 120–27
bar charts 73–4
baseline differences 113–14, 115, 118–19, 123
Berry, G, Statistical signifi cance and confi dence 

intervals 5, 7–9
best practice 58, 136–9
between-group comparisons 110–15
bias

clinical trials 58
incidence/prevalence estimates 19, 20

minimising 132
randomisation 61–2, 64–5
screening tests 157

blood glucose 156
body composition 98–9, 102–6
breast cancer 150, 157
breech presentation 151–2, 159–61
bronchitis 32

Campeotto, F et al., Low levels of faecal 
pancreatic enzyme elastase 1 in stools of 
preterm infants 99–100, 107–9

cardiac surgery 132–3, 141–6
case-control studies 44, 45
censored observations 129, 130, 176
cephalic fetal presentation 151–2, 159–61
CER see control event rate
cervical screening 154
change scores 110–27
chi-square test 31, 32, 33, 54, 176

see also chi-square test for trend; Pearson’s 
chi-square

chi-square test for trend 33, 34, 176
children

see also babies
asthma/allergy study 22–4, 27–8
congenital heart disease study 132–3, 141–6
immunisation reactions to needle size 46–7, 

53–6
obesity and exercise enjoyment 

study 111–14
chlamydia 157
chronic obstructive pulmonary disease 

(COPD) 111
CI see confi dence intervals
clinical trials 57–68, 136–9, 177

see also individual clinical trials; randomised 
controlled trials

clinically important difference 4, 71
coding 144–5, 148
coeffi cient of determination (r 2) 94, 177
cognitive function assessment 5–6, 10–17
cohort studies 20, 23–4, 29–30, 111, 

132–3, 141–6
collinearity 104, 105–6
combinations of diagnostic tests 157
common events 46, 49
compliance 124, 127
complications 41, 124
confi dence intervals 2–3, 5, 7–9, 20–21, 45–6
confi dentiality 144
confounding variables 45, 58
congenital heart disease 132–3, 141–6
contingency tables 31, 32, 34, 61

continuity corrected chi-square 34
continuity correction 33
control event rate (CER) 60, 61, 176
convenience samples 19
COPD see chronic obstructive 

pulmonary disease
correlation coeffi cients 93–109
cost utility analysis 74–5, 85–92
counter-intuitive effects 50, 52, 149
Cox regression 131
critical appraisal checklists

back pain treatments comparison 75–6
correlation/regression analysis 100–101
diagnostic statistics 151–2
follow-up studies 116, 133–4
incidence/prevalence reporting 23
prevalence rates between groups 

36, 62–3
risk estimate reports 47–8

critical values 79, 80–81
cross-over trials 110, 111, 176
cross-sectional studies 20, 22–4, 27–8, 151–2, 

159–61
cross-tabulations see contingency tables
cumulative prevalence 19
current best practice 58, 136–9
cut-off points 156

data collection 38, 142
data quality 144
data and safety monitoring committees 

(DSMC) 60
Davies, HTO et al., When can odds ratios 

mislead? 50–52
degrees of freedom 33, 34
diabetes 5–6, 10–17, 156
diagnostic accuracy 147, 151–2, 156, 

159–61
Diagnostic accuracy of clinical examination for 

detection of non-cephalic presentation in 
late pregnancy: crosssectional analytic 
study (Nassar, N et al.) 151–2, 159–61

diagnostic statistics 147–61
diagnostic tests 147, 176
Diggle, L et al., Effect of needle length on 

incidence of local reactions to routine 
immunisation in infants age 4 months: 
randomised controlled trial 46–7, 53–6

discrepancies 50–52
dot plots 73
Driscoll, P et al., An introduction to hypothesis 

testing. Parametric comparison of two 
groups—2 77–84

drug users 23–4, 29–30
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log-rank tests see Kaplan–Meier statistics
logarithmic transformations 71
Logroscino, G et al., Prospective study of type 2 

diabetes and cognitive decline in women 
aged 70–81 years 5–6, 10–17

longitudinal studies 111–12, 132–3, 141–6
lung volume 99
magnetic resonance imaging (MRI) 150
mammography 150, 157
Mann–Whitney U test 69, 71
mean 69–72
mean change scores 111, 112, 113, 125
mean difference 72–3, 111
mean follow-up scores 112
mean values comparison 69–92
mean within-subject difference see mean 

change score
measurement bias 20
median follow-up time 138
Miranda-Filho, DB et al., Randomised 

controlled trial of tetanus treatment with 
antitetanus immunoglobulin by the 
intrathecal or intramuscular route 34–41, 
61–2

morphine 111
mortality 41
multiple comparisons 83
multiple linear regression 104–5
multiple regression models 98–9, 102–6

Nassar, N et al., Diagnostic accuracy of clinical 
examination for detection of non-cephalic 
presentation in late pregnancy: 
crosssectional analytic study 151–2, 
159–61

needle length 46–7, 53–6
negative linear association 93
negative predictive value (NPV) 147, 148, 149, 

177
neonates 132–3, 141–6
NNT see number-needed-to-treat
nomograms 150
non-cephalic presentation 151–2, 159–61
non-intuitive interpretation 50, 52, 149
non-parametric tests 69, 71
normal distribution 69
normal distribution test see unpaired z test
normal values 96, 97, 177
normality assumption 71, 82–3
NPV see negative predictive value
null hypothesis

defi nition 1, 3, 8, 177
p values 2
type I/II errors 3, 8
unpaired t-tests 80
unpaired z-tests 77–8

number-needed-to-treat (NNT) 60–62, 177

OAPR see odds of being affected given a 
positive result

obesity 111–14
observational studies 110, 177

see also cohort studies; longitudinal studies; 
prospective studies

observer bias 58
odds 44, 177
odds of being affected given a positive result 

(OAPR) 156
odds ratio (OR)

confounders 45
defi nition 44, 177

hepatitis C virus (HCV) 23–4, 29–30
Heritier, SR et al., Inclusion of patients in 

clinical trial analysis: the 
intention-to-treat principle 66–8

HIV see human immunodefi ciency virus
hormones 98–9, 102–6
human immunodefi ciency virus (HIV) 23–4, 

29–30
hypoglycaemic medication 13–17, 98–9, 

102–6
hypothesis testing 1–17, 77–84

immunisation 46–7, 53–6
immunoglobulin 34–41, 61–2
incidence 19–30, 176

defi nition 20, 25
Incidence of hepatitis C virus and HIV among 

new injecting drug users in London: 
prospective cohort study (Judd, A 
et al.) 23–4, 29–30

Inclusion of patients in clinical trial analysis: the 
intention-to-treat principle (Heritier, SR 
et al.) 66–8

independence of observations 103–4
independence of samples 71
independent samples t-tests

assumptions 71, 82–3
childhood obesity study 112, 113
common mistakes 82
defi nition 72, 176
mean values comparison 69, 71, 80–82
results calculation 72–3

infants 46–7, 53–6, 132–3, 141–6
inference methods 7
insulin 13–17, 98–9, 102–6
intention-to-treat (ITT) 59, 60, 66–8, 177
interim analyses 59–60
interval estimates see confi dence intervals
intramuscular antitetanus treatments 

34–41, 61–2
intrathecal antitetanus treatments 34–41, 

61–2
intuitive interpretations 50, 52, 149

Judd, A et al., Incidence of hepatitis C virus and 
HIV among new injecting drug users in 
London: prospective cohort study 23–4, 
29–30

Kaplan–Meier statistics 129–31, 136, 177
Kendall’s tau 94

Langemo, D et al. A quick overview on 
measuring pressure ulcer prevalence and 
incidence 21, 25–26

lead-time bias 157
length bias 157
length/weight correlation 95, 96, 98
leptin 98–9, 102–6
level of signifi cance 1–2, 78, 80
Levene’s test of equality of variances 71, 72
likelihood ratio (LR) 149, 150, 177
line of best fi t 96, 177
line of identity 113, 114
line of no risk (unity) 45–6
linear regression 96, 97
linear relationships 93–5
linear-by-linear see chi-square trend test
linearity 104
local immune reactions 46–7, 53–6
log-rank statistic 130

DSMC see data and safety monitoring 
committees

dyspnoea 111

E1 see faecal pancreatic elastase
EER see experimental event rate
Effect of needle length on incidence of local 

reactions to routine immunisation in 
infants age 4 months: randomised 
controlled trial (Diggle, L et al.) 
46–7, 53–6

effect size 1, 71–2, 176
effectiveness 155–6
effi cacy 57, 58, 61
elastase see faecal pancreatic elastase
end-stage renal failure 137, 138, 139
environmental tobacco smoke 32
erythema 46–7, 53–6
estimation 1–17, 19
ethical aspects 154–5
events 129, 132, 136–9, 176
Excel calculations 35
exercise enjoyment 111–14
expected count 33
experimental event rate (EER) 60, 61, 176
experimental studies 110, 176

see also clinical trials; cross-over trials; 
randomised controlled trials

explanatory variables 70, 96, 176
exposure 31, 32

faecal pancreatic elastase 1 (E1) 99–100, 
107–9

Fairbank, J et al., Randomised controlled trial to 
compare surgical stabilisation of the 
lumbar spine with an intensive 
rehabilitation programme for patients with 
chronic low back pain 115–16, 120–27

false-negatives (FN) 149, 150
false-positives (FP) 149, 150
fat distribution study 98–9, 102–6
FCV see forced vital capacity
fetal presentation study 151–2
Fisher’s exact test 32, 33, 35
FN see false-negatives
follow-up studies 110–27
forced vital capacity (FCV) 99
FP see false-positives
freedom, degrees of 33, 34
frequency of an outcome 31–41

Garnett, S et al., The art and science of 
regression modelling; methods for building 
valid models to explore hormone and body 
composition interactions 98–9, 102–6

Gibbs, LJ et al., Survival after surgery or 
therapeutic catheterisation for congenital 
heart disease in children in the United 
Kingdom: analysis of the central cardiac 
audit database for 2000–1 132–3, 134, 
141–6

gold standard tests 147, 176
good practice 58, 136–9
graphical representations 73–4, 130–31, 136–9
Grimes, DA et al., Uses and abuses of screening 

tests 151, 154–8
groups selection 79, 81

hazard ratios 129, 131, 139, 176
HCV see hepatitis C virus
heart disease 132–3, 141–6
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body composition/hormones 103
clinical trials power 59
diagnostic/screening tests 150–51
good study design 9
mean values comparison 71
P values signifi cance 2, 3
Pearson’s chi-square 35
type I/II errors 4

sampling variability 7
scatter plots 95
screening tests 147–61, 178
SD see standard deviation
SE see standard error
SE Diff see standard error of the difference 

between the means
selection bias 20
sensitivity 90–91, 148–51, 155–6, 178
Sensitivity-Negative-out (SnNout) 149
shoulder pain 118–19
signifi cance levels 1–2, 78, 80
signifi cance tests 4–5, 7, 82
Simple Interactive Statistical Analysis 

(SISA) 32
simvastatin 138, 139
single blinded trials 58
SISA see Simple Interactive Statistical Analysis
SnNout see Sensitivity-Negative-out
software packages 32
Spearman’s rho 94
specialist stroke units 52
specifi city 148–51, 155–6, 178
Specifi city-Positive-In (SpPin) 149
spinal surgery 74–5, 85–92, 115–16, 120–27
SpPin see Specifi city-Positive-In
squared values 32
standard deviation (SD) 3, 70, 71–2, 178
standard error of the difference between the 

means (SE Diff) 78, 79, 81, 82
standard error (SE) 3, 70, 138, 178
Standards for Reporting Diagnostic Accuracy 

Studies (STARD) initiative 151
statistical inference 7
statistical signifi cance 1–2, 5, 7–9, 78, 82
Statistical signifi cance and confi dence intervals 

(Berry, G) 5, 7–9
stroke units 52
Student’s t-tests see independent samples 

t-tests
study design 9, 103, 107–8, 121–2
summary statistics 1, 2, 3, 4, 70
Surgical stabilisation of the spine ... 

(Rivero-Arias, O et al.) 74–5, 85–92
surgical treatments 74–5, 85–92, 115–16, 

120–27
survival analyses 129–46

assumptions 131–12
Survival plots of time-to-event outcomes in 

clinical trials: good practice and pitfalls 
(Pocock, SJ et al.) 132, 136–9

syphilis tests 157

t values 72, 81–2, 178
t-tests see independent samples t-tests
tau (Kendall) 94
test statistics 79, 81
tetanus 34–41, 61–2
The art and science of regression modelling; 

methods for building valid models to 
explore hormone and body composition 
interactions (Garnett, S et al.) 98–9, 102–6

time-to-event outcomes 132, 136–9

prevalence rate (p) 19–30, 36, 62–3
probability see risk
proportions comparison 31–41
prospective studies

congenital heart disease survival 132–3, 
141–6

faecal pancreatic elastase 1 99–100, 107–9
HCV/HIV in drug users 23–4, 29–30
type 2 diabetes in older women 5–6, 10–17

Prospective study of type 2 diabetes and 
cognitive decline in women aged 70–81 
years (Logroscino, G.) 5–6, 10–17

protection 43–7
proxy gold standard tests 147

QALYs see quality adjusted life years
qualitative judgements 52
quality adjusted life years (QALYs) 86, 

87, 90–91
quantitative judgements 52

r see Pearson’s correlation coeffi cient
r 2 see coeffi cient of determination
random selection 44, 94, 148, 177
randomisation 61, 64–5
Randomisation: essential for reducing bias 

(Altman, DG) 61, 64–5
Randomised controlled trial of tetanus 

treatment with antitetanus 
immunoglobulin by the intrathecal or 
intramuscular route (Miranda-Filho, DB 
et al.) 34–41, 61–2

Randomised controlled trial to compare surgical 
stabilisation of the lumbar spine with an 
intensive rehabilitation programme for 
patients with chronic low back pain 
(Fairbank, J et al.) 115–16, 120–27

randomised controlled trials
back pain treatments 74–5, 85–92, 115–16, 

120–27
contingency tables 61
defi nition 58, 110, 177
follow-up data analysis 115, 118–19
immunisation needle length 46–7, 53–6
tetanus treatments 34–41, 61–2

redness (erythema) 46–7, 53–6
reference values see normal values
regression analysis 93–109, 113–14
regression models 104

assumptions 97, 103
regression to the mean, 113, 117–18, 124
rehabilitation treatments 74–5, 85–92, 

115–16, 120–27
relative risk 43–56, 178
reliability 155
reporting 21, 47–8, 58
representative samples 19
residuals 96, 97, 178
respiratory infection 32
response bias 20
risk 43, 44, 47–8, 178

see also relative risk
risk estimate reports 47–8
Rivero-Arias, O et al., Surgical stabilisation of 

the spine ... 74–5, 85–92
rules see reporting rules

safety 57, 58, 61
sample selection 19, 44–5
sample size

antitetanus treatments comparison 38

misinterpretation 50–52
relative risk comparison 43–56
study design comparisons 45
when to use 44–5

Odds ratios should be avoided when events are 
common (Altman, DG et al.) 46, 49

one-tailed tests 4–5, 82
open label trials 58
OR see odds ratio
oral hypoglycaemic medication 13–17
Oswestry disability index 120, 121, 122, 

125, 126
outcome variables 70, 96, 177
outcomes 31–41, 110–27, 145
outcomes of interest see events
outliers 72, 177
overlap of 95% confi dence intervals 21

p see prevalence rate
P values

chi-square tests 34
correlation coeffi cients 93
defi nition 1–2, 3, 177
estimation 2
independent samples t-tests 71
statistical signifi cance 1–2

paired t-tests 110–11, 177
pancreatic elastase 1 99–100, 107–9
parametric statistics 70, 177
parametric tests 69–74, 77–84

see also independent samples t-tests; 
Pearson’s correlation coeffi cient; unpaired 
z-tests

PCR tests 156–7
Pearson’s chi-square 32, 33, 34, 35
Pearson’s correlation coeffi cient (r) 93–5, 177
per cent survival 129
per-protocol (PP) analyses 67
percentages 21
phase I/II/III trial 57–8, 177
phase IV surveillance 177
Pocock, SJ et al., Survival plots of time-to-event 

outcomes in clinical trials: good practice 
and pitfalls 132, 136–9

point estimates 7
point prevalence 19
polynomials 104
positive likelihood ratio 150
positive predictive value (PPV) 147, 148, 149, 

177
post-marketing surveillance (PMS) 58
power 59
PP see per-protocol
PPV see positive predictive value
precision 2–3, 20–21

see also accuracy
predictive value 147, 148
predictive variables 97–8
pregnancy 151–2, 159–61
pressure ulcer 25–6
preterm babies 99–100, 107–9
prevalence

asthma allergies study 20, 22–4
defi nition 25, 177
incidence distinction 19, 20
screening test predictive values 148, 149, 

156–7
Prevalence of asthma and allergy in 

schoolchildren in Belmont, Australia: three 
cross-sectional surveys over 20 years 
(Toelle, BG et al.) 22–4, 27–8
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validity 155, 156
variance 70, 178
Vickers, AJ et al., Analysing controlled trials 

with baseline and follow-up 
measurements 115, 118–19

weight/length correlation 95, 96, 98
When can odds ratios mislead? (Davies, HTO 

et al.) 50–52
within-group differences 112–13

x-axis restriction 130–31

z-tests see unpaired z-tests

two-tailed tests of signifi cance 4–5, 82
type 2 diabetes 5–6, 10–17
type I errors 3–4, 8, 59, 178
type II errors 3–4, 8, 59, 178
unadjusted odds ratios 45
unity see line of no risk
unpaired t-tests see independent samples 

t-tests
unpaired z-tests 69, 72, 77–80, 

82, 178
Uses and abuses of screening tests (Grimes, DA 

et al.) 151, 154–8

vaccinations 46–7, 53–6

TN see true-negatives
tobacco smoke 32
Toelle, BG et al., Prevalence of asthma and 

allergy in schoolchildren in Belmont, 
Australia: three cross-sectional surveys over 
20 years 22–4, 27–8

TP see true-positives
TR see treatment-received
treatment-received (TR) analyses 59, 60, 

67–8, 178
true-negatives (TN) 149
true-positives (TP) 149
two-sample t-tests see independent samples 

t-tests

Peat_Index.indd   182Peat_Index.indd   182 6/13/2008   5:15:49 PM6/13/2008   5:15:49 PM



Peat_Index.indd   183Peat_Index.indd   183 6/13/2008   5:15:50 PM6/13/2008   5:15:50 PM



Peat_Index.indd   184Peat_Index.indd   184 6/13/2008   5:15:50 PM6/13/2008   5:15:50 PM


